National Repository of Grey Literature 7 records found  Search took 0.01 seconds. 
Structural composition and functional properties of mitochondrial FoF1 ATP synthase on models of specific subunits deficiencies
Efimova, Iuliia ; Mráček, Tomáš (advisor) ; Kalous, Martin (referee)
Mitochondrial ATP synthase represents the final complex of oxidative phosphorylation (OXPHOS) system located in the inner mitochondrial membrane. Its primary role is to utilize mitochondrial membrane potential (Δψm) generated by respiratory chain complexes to produce energy in the form of ATP. Mammalian ATP synthase comprises of 17 different subunits organized into membranous Fo and matrix-oriented F1 domains. Defects of complex V and their manifestation have been studied on mitochondrial, cellular, tissue and organism levels using different models, including human cell lines and cell lines derived from patient tissues. In many cases mitochondrial diseases display threshold behaviour, when genetic defect is phenotypically manifested only bellow certain threshold in particular enzyme complex activity and/or content. This work was aimed at elucidation of functional consequences of ATP synthase deficiency in HEK293 cell lines with suppressed gene expression of γ, δ or ε subunits of ATP synthase central stalk. We have analysed range of clones with respective subunits knockdown and found varying decrease in assembled ATP synthase content, which was mirrored by the decrease in individual ATP synthase subunits. The only exception was subunit Fo-c, whose levels remained unchanged or even increased. ATP...
The inner mitochondrial membrane cristae biogenesis
Efimova, Iuliia ; Mráček, Tomáš (advisor) ; Petrů, Markéta (referee)
Invaginations of the inner mitochondrial membrane originate cristae - important structural and bioenergetic mitochondrial compartments. Long-term observations of mitochondrial ultrastructure uncovered cristae dynamics, but did not identify mechanisms of cristae formation and maintenance. This thesis summarizes results of latest research on molecular mechanisms of mitochondrial cristae biogenesis, which are conserved from fungi to mammals including human. The emphasis is put on major remodeling factors: F1Fo-ATP synthase dimers, MICOS complex, OPA1 protein and cardiolipin. Their defects lead to extensive changes on cristae level, as well as on mitochondrial, cellular and organismal levels. Various pathophysiological conditions and human mitochondrial diseases are related to these defects. More detailed research of cristae biogenesis is therefore of high significance, new findings could assist in the development of new treatments for mitochondrial disorders.
Molecular mechanism of reactive oxygen species production by flavin dehydrogenases of mitochondrial respiratory chain.
Holzerová, Eliška ; Mráček, Tomáš (advisor) ; Kalous, Martin (referee)
The aim of this thesis is to investigate molecular mechanism of reactive oxygen species production by flavin dehydrogenases mitochondrial glycerol-3-phosphate dehydrogenase (mGPDH) and succinate dehydrogenase (SDH). Together, they represent important source of reactive oxygen species in mammalian mitochondria, but the mechanism of electron leak is still poorly understood. Because mechanisms of reactive oxygen species production by other complexes of respiratory chain are better characterized, they can serve as case studies to get insight into mechanisms of reactive oxygen species by flavin dehydrogenases. Relevant knowledge is therefore summarized in the first part of the thesis. To study the production of reactive oxygen species by the isolated flavin dehydrogenases, we used brown adipose tissue mitochondria solubilized by digitonin as a model. Enzyme activity measurements, hydrogen peroxide production studies by Amplex UltraRed fluorescence and luminol luminescence revealed flavin as the most likely source of electron leak in SDH under in vivo conditions, while we propose coenzyme Q binding site as the site of reactive oxygen species production in the case of mGPDH. Distinct mechanism of this production by the two dehydrogenases is also apparent from induction of reactive oxygen species...
Energetický metabolismus inbredních myších linií a jeho ovlivnění dietou
Kůs, Vladimír ; Kopecký, Jan (advisor) ; Nováková, Olga (referee) ; Mráček, Tomáš (referee)
Obesity and associated metabolic disorders, called as "metabolic syndrome", currently represent a major social and economical problem of public health. From the energy balance point of view, long-lasting energy surplus leads eventually to massive accumulation of energy stores resulting in various adverse effects on metabolism and health. General goal of the thesis was to examine these metabolic disorders at cellular and whole-body level using suitable mouse models. The main focus was on the most metabolically active tissue, namely skeletal muscle, liver and adipose tissue and on the regulatory roles of AMP-activated protein kinase (AMPK) and leptin in the energy metabolism. The whole thesis is based on four published studies. Two studies were focused on skeletal muscle. In the first study, we proved the involvement of leptin and AMPK in the metabolic response to high-fat diet-feeding. We described a mechanism of muscle non- shivering thermogenesis based on enhanced lipid catabolism, which contributes to the genetically-determined resistance of inbred A/J mice to obesity. Such mechanism was not operating in obesity-prone C57BL/6 mice. In the second study, performed using C57BL/6 mice, we have described beneficial effect of combination treatment using n-3 polyunsaturated fatty acids (n-3 PUFA) of...
Mitochondrial production of reactive oxygen species and its role in physiological regulations
Holzerová, Eliška ; Mráček, Tomáš (advisor) ; Kalous, Martin (referee)
The production of mitochondrial reactive oxygen species and the resulting oxidative stress is an important phenomenon driving long-lasting research and intense discussions. Knowledge of exact mechanisms of reactive oxygen species production and pathways leading to their formation could help us to directly affect their production, a task with potential terapeutic implications. The molecular nature of the production of reactive oxygen species by some enzymes has already been well documented, but others still remain controversial and current theories are obviously far from the truth. Much more interesting is the question of physiological importace of this production. The reactive oxygen species were considered harmful factors clearly distorting the integrity of the organism for a long time. However, recent research suggest that their existence can also be beneficial and effective. Evidently they can serve as a signaling molecules in several metabolic and regulatory pathways occurring in the organism. This bachelor thesis offers insight into the current state of knowledge. It focuses on the most detailed description of the reactive oxygen species production by mitochondrial respiratory chain enzymes. Furthermore, it deals with some signaling cascades, where involvement of mitochondrially generated...
Sites and Consequences of Mitochondreal ROS Production
Mráček, Tomáš ; Houštěk, Josef (advisor) ; Pelouch, Václav (referee) ; Kolarov, Jordan (referee)
The thesis consists of 8 articles (6 published and 2 submitted), which may be divided into two major lines. The first (articles 1-4) deals with mitochondrial glycerophosphate dehydrogenase. We have shown that this enzyme is capable of massive ROS production and in the presented works we studied in more detail this ROS production as well as some aspects of enzyme biogenesis, so as to better understand its physiological significance. The second line (articles 5-8) represents our studies on the potential involvement of ROS in pathogenesis of mitochondrial diseases. 1. Glycerophosphate-dependent hydrogen peroxide production by brown adipose tissue mitochondria and its activation by ferricyanide; Drahota Z., Chowdhury SKR., Floryk D., Mráček T., Wilhelm J., Rauchová H., Lenaz G., Houštěk J.; J Bioenerg Biomembr. 2002; 34(2):105-13. Indeed, this was first article to demonstrate ROS production by mammalian mGPDH. We studied oxidation of glycerophosphate by brown adipose tissue mitochondria, which are known to contain high amounts of mGPDH. We found significant GP-dependent AA- stimulated production of H2O2. To further verify our findings, we used three independent methods for H2O2 measurement - fluorescence detection with p-hydroxyphenylacetic acid, antimycine A - insensitive oxygen consumption, and luminometric...

Interested in being notified about new results for this query?
Subscribe to the RSS feed.