Národní úložiště šedé literatury Nalezeno 2 záznamů.  Hledání trvalo 0.01 vteřin. 
Control System of Building using Modelling and Simulation
Mohamad, Mohamad Kheir ; Ostrý, Milan (oponent) ; Masaryk, Michal (oponent) ; Štětina, Josef (vedoucí práce)
Maintaining of the indoor climate conditions so that they keep compatible with the occupants comfort is a key issue for control of heating, ventilation and air conditioning systems (HVAC systems). Computer modelling offers a virtual environment similar to real climatic conditions indoors and outdoors. It aims basically to devise solutions for control of indoor climatic conditions. This process requires understanding of these environments from physical and mathematical perspective, so that physical processes of these environments can be represented using relationships and equations which can reflect the influence of different environmental parameters. Then simulation process offers the possibility to describe the interaction between these models and their behaviour over time. It gives default representation of those environments and allows understanding of their behaviour before transferring these models to real applications. MATLAB/SIMULINK software has an advanced ability to simulate HVAC systems by creating a wide working environment for the designers depending on the development of mathematical models and simulating them by SIMULINK so that results output could be compatible with the desired conditions. This thesis addresses the process of modelling the indoor environment in buildings in order to understand the behaviour of key parameters which affect the thermal comfort of the occupants. The mathematical models of the indoor environment of a classroom have been designed with three basic indoor parameters: concentration of carbon dioxide, air temperature and relative humidity. Changes of these parameters over time have been simulated. Then, control strategies have been proposed for these parameters in order to keep them under the appropriate conditions of the occupants, although changing of climate outdoors, thermal and mass loads indoors. Through mathematical methods, some optimization methods have been proposed in order to reduce energy consumption without affecting the permissible limits of these parameters. Validation process of the model has been carried out by comparing the results with the real outputs monitoring by Honeywell Enterprise Buildings Integrator system installed in the classroom.
Control System of Building using Modelling and Simulation
Mohamad, Mohamad Kheir ; Ostrý, Milan (oponent) ; Masaryk, Michal (oponent) ; Štětina, Josef (vedoucí práce)
Maintaining of the indoor climate conditions so that they keep compatible with the occupants comfort is a key issue for control of heating, ventilation and air conditioning systems (HVAC systems). Computer modelling offers a virtual environment similar to real climatic conditions indoors and outdoors. It aims basically to devise solutions for control of indoor climatic conditions. This process requires understanding of these environments from physical and mathematical perspective, so that physical processes of these environments can be represented using relationships and equations which can reflect the influence of different environmental parameters. Then simulation process offers the possibility to describe the interaction between these models and their behaviour over time. It gives default representation of those environments and allows understanding of their behaviour before transferring these models to real applications. MATLAB/SIMULINK software has an advanced ability to simulate HVAC systems by creating a wide working environment for the designers depending on the development of mathematical models and simulating them by SIMULINK so that results output could be compatible with the desired conditions. This thesis addresses the process of modelling the indoor environment in buildings in order to understand the behaviour of key parameters which affect the thermal comfort of the occupants. The mathematical models of the indoor environment of a classroom have been designed with three basic indoor parameters: concentration of carbon dioxide, air temperature and relative humidity. Changes of these parameters over time have been simulated. Then, control strategies have been proposed for these parameters in order to keep them under the appropriate conditions of the occupants, although changing of climate outdoors, thermal and mass loads indoors. Through mathematical methods, some optimization methods have been proposed in order to reduce energy consumption without affecting the permissible limits of these parameters. Validation process of the model has been carried out by comparing the results with the real outputs monitoring by Honeywell Enterprise Buildings Integrator system installed in the classroom.

Chcete být upozorněni, pokud se objeví nové záznamy odpovídající tomuto dotazu?
Přihlásit se k odběru RSS.