Národní úložiště šedé literatury Nalezeno 8 záznamů.  Hledání trvalo 0.00 vteřin. 
Analýza formantů českých samohlásek generovaných nahlas a šeptem
Matug, Michal ; Vašek, Martin (oponent) ; Mišun, Vojtěch (vedoucí práce)
Mezi důležité charakteristiky akustických prostorů vokálního traktu člověka patří spektrální a modální vlastnosti. Jsou přítomny při generování samohlásek a jiných akustických projevů lidské řeči. Rezonanční jevy akustických kavit vokálního traktu můžeme pozorovat ve spektrech lidské řeči, hlavně však při generování samohlásek. U vokálního traktu se ale ve spektrech samohlásek vyskytuje řada frekvenčních vrcholů, které nemusí nutně být rezonančního původu. Proto je někdy obtížné správně přiřadit frekvenční vrcholy rezonančním vrcholům akustických kavit. To spočívá ve působu akustického buzení vokálních traktů. Vyslovování samohlásek nahlas a šeptem má odlišné buzení vokálního traktu. Při vytváření samohlásek nahlas je buzen soustavou harmonických složek vztažených k základní frekvenci hlasivek. Při mluvení šeptem je vokální trakt buzen spojitým spektrem generovaným turbulentním prouděním vydechovaného proudu vzduchu přes hlasivkovou štěrbinu. Formantem nazýváme frekvenci, při které dochází k rezonanci akustického prostoru. Cílem této práce je analýza formantů českých samohlásek generovaných nahlas a šeptem. Experimentální měření těchto formantů bylo provedeno na lidském vokálním traktu pro všechny samohlásky. Dále pak na uměle vytvořených vokálních traktech pro samohlásky A, I. Poté byly modální vlastnosti vokálních kavit pro samohlásky A, I ověřeny metodou konečných prvků za pomoci výpočtového programu ANSYS. V práci byly zkoumány průběhy akustických tlaků pro jednotlivé formanty, vliv velikosti vokálního traktu a vliv správného otevření úst na formanty. Byla také provedena výpočtová simulace harmonického buzení traktu na straně hlasivek.
Výpočtové modelování interakce kmitajících hlasivek s proudem vzduchu
Pavlica, Ondřej ; Matug, Michal (oponent) ; Švancara, Pavel (vedoucí práce)
Práce se zabývá vytvořením výpočtového modelu funkce lidských hlasivek. Algoritmus výpočtu zahrnuje interakci hlasivek s proudem vzduchu. Součástí práce jsou modální analýzy strukturního a akustického prostředí, rešeržní studie funkce hlasivek a přehled vybraných doposud publikovaných výpočtových modelů. Analýza výsledků dosažených simulačním výpočtovým modelováním se zaměřuje na tlakové a rychlostní poměry pod, mezi a nad hlasivkami, pohyb hlasivek, průběhy napětí v jednotlivých vrstvách hlasivek a posouzení vlivu tloušťky tkání na výsledné chování hlasivek.
Využití metody konečných prvků pro modelování patologických změn v tkáni lidských hlasivek a jejich projev ve videokymogramu
Martínek, Tomáš ; Matug, Michal (oponent) ; Švancara, Pavel (vedoucí práce)
Práce se zabývá vytvořením rovinného výpočtového modelu lidských hlasivek, zahrnující interakci struktury a proudícího vzduchu. Na tomto modelu je zkoumán vliv změn vrstev tkání hlasivek (tuhost, tloušťka) a jejich projevy na snímku videokymogramu. Analýza výsledků se zabývá také vyhodnocením tlaků ve vybraných bodech pod, mezi a nad hlasivkami. Výsledky naznačují možnou podobnost s chováním lidských hlasivek s patologiemi. Součástí práce je i rešerše funkce hlasivek, přehled patologií a užívaných výpočtových modelů hlasivek.
Náhradní hlasivky pro generování zdrojového hlasu: Počítačové modelování funkce hlasivek
Matug, Michal ; Vampola, Tomáš (oponent) ; Horáček, Jaromír (oponent) ; Švancara, Pavel (vedoucí práce)
Práce se zabývá výpočtovým modelováním funkce lidských hlasivek a vokálního traktu s využitím metody konečných prvků (MKP). Hlas hraje klíčovou roli v lidské komunikaci. Proto je jedním z důležitých cílů současné medicíny vytvořit umělé hlasivky, které by mohly být implantovány pacientům, kterým musely být odstraněny jejich hlasivky původní. Pro pochopení principů tvorby hlasu, určení parametrů, které musí umělé hlasivky splňovat a ověření jejich funkčnosti je možno využít výpočtového modelování. První část práce se zabývá výpočtovým modelováním pro tvorbu lidského hlasu šeptem. V této kapitole byl na MKP modelu vokálního traktu a průdušnice zkoumán vliv velikosti mezihlasivkové mezery na rozložení vlastních frekvencí pro jednotlivé samohlásky. Dále je v práci prezentován rovinný (2D) konečnoprvkový model samobuzeného kmitání lidských hlasivek v interakci s akustickými prostory vokálního traktu. Rovinný model vokálního traktu byl vytvořen na základě snímků z magnetické rezonance (MRI). Pro řešení interakce mezi strukturou a tekutinou je použito explicitní výpočtové schéma s oddělenými řešiči pro strukturu a pro proudění. Vytvořený výpočtový model zahrnuje: velké deformace tkáně hlasivek, kontakt mezi hlasivkami, interakci mezi strukturou a tekutinou, morfování sítě vzduchu podle pohybu hlasivek (metoda Arbitrary Lagrangian-Eulerian), neustálené viskózní a stlačitelné nebo nestlačitelné proudění popsané pomocí Navier-Stokesových rovnic a přerušování proudu vzduchu během uzavření hlasivek. Na tomto modelu jsou zkoumány projevy změn tuhosti a tlumení jednotlivých vrstev (zejména pak laminy proprii). Součástí této výpočtové analýzy je také porovnání chování hlasivek pro stlačitelný a nestlačitelný model proudění. Ze získaných výsledků výpočtu MKP modelu jsou následně vytvářeny videokymogramy (VKG), které umožňují porovnat pohyb mezi jednotlivými variantami modelu a se skutečnými lidskými hlasivkami. V další části práce je potom prezentován prostorový (3D) MKP model samobuzeného kmitání lidských hlasivek. Tento prostorový model vznikl z předchozího rovinného modelu vytažením do třetího rozměru. Na tomto modelu byl opět porovnáván vliv použití stlačitelného a nestlačitelného modelu proudění na pohyb hlasivek a vytvářený zvuk s využitím videokymogramů a zvukových spekter. Poslední část práce se zabývá jednou z možností náhrady přirozeného zdrojového hlasu v podobě plátkového elementu. Chování plátkového elementu bylo zkoumáno na výpočtovém a experimentálním modelu. Experimentální model umožňuje změny v nastavení vzájemné polohy plátku vůči dorazu a provádění akustických a optických měření.
Náhradní hlasivky pro generování zdrojového hlasu: Počítačové modelování funkce hlasivek
Matug, Michal ; Vampola, Tomáš (oponent) ; Horáček, Jaromír (oponent) ; Švancara, Pavel (vedoucí práce)
Práce se zabývá výpočtovým modelováním funkce lidských hlasivek a vokálního traktu s využitím metody konečných prvků (MKP). Hlas hraje klíčovou roli v lidské komunikaci. Proto je jedním z důležitých cílů současné medicíny vytvořit umělé hlasivky, které by mohly být implantovány pacientům, kterým musely být odstraněny jejich hlasivky původní. Pro pochopení principů tvorby hlasu, určení parametrů, které musí umělé hlasivky splňovat a ověření jejich funkčnosti je možno využít výpočtového modelování. První část práce se zabývá výpočtovým modelováním pro tvorbu lidského hlasu šeptem. V této kapitole byl na MKP modelu vokálního traktu a průdušnice zkoumán vliv velikosti mezihlasivkové mezery na rozložení vlastních frekvencí pro jednotlivé samohlásky. Dále je v práci prezentován rovinný (2D) konečnoprvkový model samobuzeného kmitání lidských hlasivek v interakci s akustickými prostory vokálního traktu. Rovinný model vokálního traktu byl vytvořen na základě snímků z magnetické rezonance (MRI). Pro řešení interakce mezi strukturou a tekutinou je použito explicitní výpočtové schéma s oddělenými řešiči pro strukturu a pro proudění. Vytvořený výpočtový model zahrnuje: velké deformace tkáně hlasivek, kontakt mezi hlasivkami, interakci mezi strukturou a tekutinou, morfování sítě vzduchu podle pohybu hlasivek (metoda Arbitrary Lagrangian-Eulerian), neustálené viskózní a stlačitelné nebo nestlačitelné proudění popsané pomocí Navier-Stokesových rovnic a přerušování proudu vzduchu během uzavření hlasivek. Na tomto modelu jsou zkoumány projevy změn tuhosti a tlumení jednotlivých vrstev (zejména pak laminy proprii). Součástí této výpočtové analýzy je také porovnání chování hlasivek pro stlačitelný a nestlačitelný model proudění. Ze získaných výsledků výpočtu MKP modelu jsou následně vytvářeny videokymogramy (VKG), které umožňují porovnat pohyb mezi jednotlivými variantami modelu a se skutečnými lidskými hlasivkami. V další části práce je potom prezentován prostorový (3D) MKP model samobuzeného kmitání lidských hlasivek. Tento prostorový model vznikl z předchozího rovinného modelu vytažením do třetího rozměru. Na tomto modelu byl opět porovnáván vliv použití stlačitelného a nestlačitelného modelu proudění na pohyb hlasivek a vytvářený zvuk s využitím videokymogramů a zvukových spekter. Poslední část práce se zabývá jednou z možností náhrady přirozeného zdrojového hlasu v podobě plátkového elementu. Chování plátkového elementu bylo zkoumáno na výpočtovém a experimentálním modelu. Experimentální model umožňuje změny v nastavení vzájemné polohy plátku vůči dorazu a provádění akustických a optických měření.
Využití metody konečných prvků pro modelování patologických změn v tkáni lidských hlasivek a jejich projev ve videokymogramu
Martínek, Tomáš ; Matug, Michal (oponent) ; Švancara, Pavel (vedoucí práce)
Práce se zabývá vytvořením rovinného výpočtového modelu lidských hlasivek, zahrnující interakci struktury a proudícího vzduchu. Na tomto modelu je zkoumán vliv změn vrstev tkání hlasivek (tuhost, tloušťka) a jejich projevy na snímku videokymogramu. Analýza výsledků se zabývá také vyhodnocením tlaků ve vybraných bodech pod, mezi a nad hlasivkami. Výsledky naznačují možnou podobnost s chováním lidských hlasivek s patologiemi. Součástí práce je i rešerše funkce hlasivek, přehled patologií a užívaných výpočtových modelů hlasivek.
Výpočtové modelování interakce kmitajících hlasivek s proudem vzduchu
Pavlica, Ondřej ; Matug, Michal (oponent) ; Švancara, Pavel (vedoucí práce)
Práce se zabývá vytvořením výpočtového modelu funkce lidských hlasivek. Algoritmus výpočtu zahrnuje interakci hlasivek s proudem vzduchu. Součástí práce jsou modální analýzy strukturního a akustického prostředí, rešeržní studie funkce hlasivek a přehled vybraných doposud publikovaných výpočtových modelů. Analýza výsledků dosažených simulačním výpočtovým modelováním se zaměřuje na tlakové a rychlostní poměry pod, mezi a nad hlasivkami, pohyb hlasivek, průběhy napětí v jednotlivých vrstvách hlasivek a posouzení vlivu tloušťky tkání na výsledné chování hlasivek.
Analýza formantů českých samohlásek generovaných nahlas a šeptem
Matug, Michal ; Vašek, Martin (oponent) ; Mišun, Vojtěch (vedoucí práce)
Mezi důležité charakteristiky akustických prostorů vokálního traktu člověka patří spektrální a modální vlastnosti. Jsou přítomny při generování samohlásek a jiných akustických projevů lidské řeči. Rezonanční jevy akustických kavit vokálního traktu můžeme pozorovat ve spektrech lidské řeči, hlavně však při generování samohlásek. U vokálního traktu se ale ve spektrech samohlásek vyskytuje řada frekvenčních vrcholů, které nemusí nutně být rezonančního původu. Proto je někdy obtížné správně přiřadit frekvenční vrcholy rezonančním vrcholům akustických kavit. To spočívá ve působu akustického buzení vokálních traktů. Vyslovování samohlásek nahlas a šeptem má odlišné buzení vokálního traktu. Při vytváření samohlásek nahlas je buzen soustavou harmonických složek vztažených k základní frekvenci hlasivek. Při mluvení šeptem je vokální trakt buzen spojitým spektrem generovaným turbulentním prouděním vydechovaného proudu vzduchu přes hlasivkovou štěrbinu. Formantem nazýváme frekvenci, při které dochází k rezonanci akustického prostoru. Cílem této práce je analýza formantů českých samohlásek generovaných nahlas a šeptem. Experimentální měření těchto formantů bylo provedeno na lidském vokálním traktu pro všechny samohlásky. Dále pak na uměle vytvořených vokálních traktech pro samohlásky A, I. Poté byly modální vlastnosti vokálních kavit pro samohlásky A, I ověřeny metodou konečných prvků za pomoci výpočtového programu ANSYS. V práci byly zkoumány průběhy akustických tlaků pro jednotlivé formanty, vliv velikosti vokálního traktu a vliv správného otevření úst na formanty. Byla také provedena výpočtová simulace harmonického buzení traktu na straně hlasivek.

Chcete být upozorněni, pokud se objeví nové záznamy odpovídající tomuto dotazu?
Přihlásit se k odběru RSS.