Národní úložiště šedé literatury Nalezeno 27 záznamů.  1 - 10dalšíkonec  přejít na záznam: Hledání trvalo 0.00 vteřin. 
Deterministicky aperiodické obrazové zařízení
Horáček, Miroslav ; Meluzín, Petr ; Krátký, Stanislav ; Knápek, Alexandr ; Mika, Filip ; Chlumská, Jana ; Matějka, František ; Král, Stanislav ; Brunn, Ondřej ; Giričová, D. ; Kopal, Jaroslav ; Kolařík, Vladimír
Příspěvek se týká analýzy, návrhu a přípravy difrakčního opticky variabilního obrazového zařízení tvořeného deterministicky aperiodickou sítí základních optických prvků. Teoretický základ je doplněn numerickou analýzou a prezentací realizované matrice a jejích replik.
E-beam pattern generator BS600 and technology zoom
Kolařík, Vladimír ; Horáček, Miroslav ; Matějka, František ; Matějka, Milan ; Urbánek, Michal ; Krátký, Stanislav ; Král, Stanislav ; Bok, Jan
This contribution deals with an electron beam pattern generator (ELG) working with a rectangular shape variable size electron beam originally developed at Institute of Scientific Instruments (ISI), later on commercialized as a BS600 series by former company Tesla, and recently upgraded by ISI cooperating with several partners. The key issue of this paper is a recently developed exposure mode which is called Technology Zoom (TZ mode) since its original concept until the recent progress. This ELG operating in the TZ mode provides three main advantages when compared to the standard exposure mode: higher exposure speed due to increased beam current density; finer stamp size adjustment and sharper stamp shape due to the stronger size reduction of the shaping aperture. Further, we discussed also some drawbacks and practical issues of the TZ mode. And finally, we summarize some results on real exposure examples. The new exposure mode (together with other recent upgrades) makes the BS600 pattern generator very useful for the nanotechnology patterning tasks and challenges.
Nano modification of the W(100)/ZrO electron emitter tip using reactive ion etching
Horáček, Miroslav ; Matějka, František ; Kolařík, Vladimír ; Matějka, Milan ; Urbánek, Michal
The W(100)/ZrO electron emitter tip is typically prepared from a tungsten single-crystal shaft of a diameter of 125 μm using electrochemical anodic etching. In order to prepare an emitter for e-beam writer with a shaped beam it is desirable to etch the tip with a radius around 100 nm. Despite the anodic etching is precisely controlled using dedicated software, the desired final form shape of the emitter tip is not achieved in every case. The correcting anodic etching is not possible due to the technology principle of the etching itself. We present in this contribution the procedure that modifies/repairs the tungsten tip shape in a nanoscale region using a reactive ion etching (RIE) in CF4 + O2 gaseous mix in a barrel type reactor at the radio frequency of 13,56 MHz and the working pressure of 1000 Pa. The change of the geometry after the RIE process is checked using a high resolution scanning electron microscope. The influence of the tip modification of the activated thermal-field W(100)/ZrO electron emitter on its emission characteristics is also presented.
Shaped E-beam nanopatterning with proximity effect correction
Urbánek, Michal ; Kolařík, Vladimír ; Matějka, Milan ; Matějka, František ; Bok, Jan ; Mikšík, P. ; Vašina, J.
Electron beam writer is a tool for writing patterns into a sensitive material (resist) in a high resolution. During the patterning, areas adjacent to the beam incidence point are exposed due to electron scattering effects in solid state (resist and the substrate). Consequently, this phenomenon, also called proximity effect, causes that the exposed pattern can be broader in comparison to the designed. In this contribution we present a software for proximity effect simulation and a software for proximity effect correction (PEC). The software is based on the model using the density of absorbed energy in resist layer and the model of resist development process. A simulation of proximity effect was carried out on binary lithography patterns, and consequently testing patterns were exposed with a corrected dose. As pattern generation, we used the e-beam writer TESLA BS 600 working with fixed energy 15keV and variable size rectangular shaped beam. The simulations of binary testing patterns and exposed patterns without PEC were compared. Finally, we compared the testing structures with PEC and without PEC, and we showed that the PEC tool works reliably for the e-beam writer BS 600.
Calibration specimens for microscopy
Kolařík, Vladimír ; Matějka, Milan ; Matějka, František ; Krátký, Stanislav ; Urbánek, Michal ; Horáček, Miroslav ; Král, Stanislav ; Bok, Jan
Recent developments in nanotechnologies raised new issues in microscopy with nanometer and sub nanometer resolution. Together with the imaging techniques, new approaches in the metrology field are required both in the direct metrology issues and in the area of calibration of the imaging tools (microscopes). Scanning electron microscopy needs the calibration specimens for adjusting the size of the view field (correct magnification) and the shape of that field (correction of deflection field distortions). Calibration specimens have been prepared using different technologies; among them the e–beam patterning and the e–beam lithography have been proved to be appropriate and flexible tool for that task. In the past, we have reported several times our achievements in this field (e.g. [1]). Nevertheless, recent advances of the patterning tool (BS600), mainly the development of the technology zoomed exposure mode [2] and the installation of the magnetic field active cancellation system [3], pushed remarkably the technology necessary for further advances in this area. Within this contribution some theoretical, technology and practical aspects are discussed; achieved results are presented.
Analysis of electron current instability in E-beam writer
Bok, Jan ; Horáček, Miroslav ; Král, Stanislav ; Kolařík, Vladimír ; Matějka, František
The electron beam writer Tesla BS600 works with a thermal-field electron emitter, fixed electron energy of 15 keV and a rectangular shaped variable-size electron beam. The size of the shaped beam (stamp) can be set from 50 to 6300 nm in standard mode and from 16 to 2100 nm in high-resolution mode. The basic increment of the stamp size is 50 nm, resp. 16 nm. Electron current density inhomogeneity and long-term instability in stamps can have negative impact on the exposure quality. Therefore, we focused on a study of the current time instability. The current density in variously sized stamps was measured by a picoammeter and a PIN diode video channel as a function of time. We analyzed short-term and long-term current instabilities using filtering techniques, as well as the Fourier analysis. Based on the results, we could be able to find reasons of the current instabilities and to propose improvements to achieve higher exposure quality.
Thin Metallic Layers Structured by E-beam Lithography
Horáček, Miroslav ; Kolařík, Vladimír ; Urbánek, Michal ; Matějka, František ; Matějka, Milan
The group of electron beam lithography runs the laboratory equipped with a shaped beam electron writer (BS600) and the basic technology for the lithographic process. The group is able to prepare micro and nano structures in thin layers of metals and other materials; including the characterization of the realized structures (using AFM, SEM, and CLSM). Within a few months (in the frame of the 'ALISI' project) a new e-beam writer with a better resolution will be installed; it will enable the realization of the actual structures in a better quality and the development of new structures with a very high innovation potential.
What is the buzz about the TZ mode
Kolařík, Vladimír ; Matějka, František ; Matějka, Milan ; Horáček, Miroslav ; Urbánek, Michal ; Bok, Jan ; Krátký, Stanislav ; Král, Stanislav ; Mika, Filip
This contribution deals with an e-beam pattern generator BS 600 that works with a variable rectangular spot of electrons (stamp). The TZ stands for the ‘technology zoom’; its meaning is a reduction of the spot size by a factor of 3. Original description of the TZ exposure mode can be found in (1), [2] and [3]; further aspects concerning the exposure system and its electron source were described in [4] and [5]; technology and related topics are discussed in [6], [7], [8] and [9]; overview of application areas is in [10], [11] and [12]; and finally, very recent results are summarized in [13], [14] and [15].
Thermal-field electron emission W(100)/ZrO cathode: facets versus edges
Matějka, František ; Horáček, Miroslav ; Kolařík, Vladimír ; Matějka, Milan
The tungsten cathode in the thermal-field emission (TFE) regime can achieve significantly higher angular current density in comparison with the Schottky cathode. The Schottky emission regime is located between the thermal emission regime and the cold field emission regime. The typical operation electric field is 0,1 - I V/nm and tip radius varies from 0.3 to 1.0 im . The thermal-field regime is located between the Schottky regime and the cold field emission regime. In the cold field emission regime the electron tunnelling is a dominant mechanism due to the electric field higher than 1 V/nm. The TFE is a combination of the field supported thermal emission and the field emission under the higher electric field. The radius of the thermal-field emitter should be lower in comparison with the Schottky emitter.
Modification of the Schottky Fe ZrO/W electron emitter
Matějka, František ; Horáček, Miroslav ; Kolařík, Vladimír ; Král, Stanislav
A Schottky electron emitter with a layer of ZrOx is used in our e-beam writing system working with a rectangular-shaped electron beam. The low radius of the tip less than 300 nm is necessary for the proper function of the electron-optical system based on the principle of point projection. We studied the influence of both the surface treatment and the change of the shape of the tip on the emission characteristics.

Národní úložiště šedé literatury : Nalezeno 27 záznamů.   1 - 10dalšíkonec  přejít na záznam:
Viz též: podobná jména autorů
11 Matějka, Filip
Chcete být upozorněni, pokud se objeví nové záznamy odpovídající tomuto dotazu?
Přihlásit se k odběru RSS.