Národní úložiště šedé literatury Nalezeno 15 záznamů.  1 - 10další  přejít na záznam: Hledání trvalo 0.00 vteřin. 
Damping of human vocal folds vibration
Radolf, Vojtěch ; Horáček, Jaromír ; Bula, Vítězslav ; Geneid, A. ; Laukkanen, A. M.
This study investigates the biomechanics of the end-part of phonation, i.e. the so-called phonation offset, experimentally. This information of vocal fold damping is important for testing and further development of mathematical modelling of phonation. The measurements of the damping ratio, based on high-speed videolaryngoscopic registrations, were realized on a male subject phonating on the vowel [o:]. The results show during the phonation offset a remarkable decrease of vibration frequency of the vocal folds and an increased damping ratio limiting to the value D≈ 0.2. The results for vocal folds’ damping are in agreement with previous measurements performed on humans using different methods.
Estimation of damping in human vocal folds vibration: measurements in vivo and on model
Horáček, Jaromír ; Radolf, Vojtěch ; Bula, Vítězslav ; Košina, Jan ; Geneid, A. ; Laukkanen, A. M.
This study investigates the biomechanics of the end-part of phonation, i.e. the so-called phonation offset, experimentally. This information of vocal folds damping is important for testing and further development of mathematical modelling of phonation. The measurements of the damping ratio, based on high-speed videolaryngoscopic registrations, were realized in vivo on a male subject and in vitro using an originally developed silicon replica of the human vocal folds. In both cases the results show remarkable decrease of vibration frequency of the vocal folds and increase of damping ratio D in the phonation offset limiting to the values D=0.12 in vivo measurement and D=0.11 in vitro measurement. The results for vocal folds’ damping are in good agreement with previous measurements performed in humans using different methods.
Acoustic resonances can support self-oscillations of a dynamic system.
Horáček, Jaromír ; Radolf, Vojtěch ; Košina, Jan ; Laukkanen, A. M.
Flutter instability of human vocal folds is a necessary condition for speaking, because airflow induced vibrations of the vocal folds create the voice source. The present study shows that the vocal fold self-oscillations can be strongly influenced by interaction with acoustic resonances of the human vocal tract.
Experimental and computer modelling study of glottal closing velocity during phonation
Horáček, Jaromír ; Radolf, Vojtěch ; Bula, Vítězslav ; Šidlof, P. ; Geneid, A. ; Laukkanen, A. M.
This preliminary study shows that the impact stress between the colliding vocal folds during phonation should not be evaluated from the maximum velocity of the glottal closing because the velocity of the closing diminishes just before the glottal closure. This phenomenon, which can be caused by a pressure cushion effect in the fast narrowing glottal gap, is demonstrated with measurements from high speed camera images recorded from human and on a physical laboratory model for vowel [u:] phonation and on a three-mass computer model employing a Hertz model of impact force. For a more detailed future study of this phenomenon a faster camera has to be used. \n
Effect of a soft tissue on vocal tract acoustic resonance properties in vocal exercises using phonation into tubes
Radolf, Vojtěch ; Horáček, Jaromír ; Laukkanen, A. M.
Mathematical model is introduced to clarify the influence of the vocal tract soft tissues on the acoustic resonance (formant) frequencies. The influence is studied in the context of voice therapy technique that uses phonation into tubes. Strong acoustc-structural interaction is demonstrated to take place in the vocal tract when it is prolonged by a tube with the distal end in air or submerged 2 cm and 10 cm in water. The numerical results from the model are compared with the resonance frequencies measured in humans.
Air-pressure characteristics and visualization of bubbling effect in water resistance therapy
Radolf, Vojtěch ; Horáček, Jaromír ; Bula, Vítězslav ; Laukkanen, A. M.
This study investigates the influence of a widely used method in voice training and therapy, phonation into a resonance tube with the outer end submerged in water (‘water resistance therapy’ with bubbling effect). Acoustic and electroglottographic (EGG) signals and air pressures in the mouth cavity were registered and the formation of bubbles was studied using high speed camera. Bubbling frequency dominates in the spectra of the pressure signal being about 15 dB higher than the amplitude of the first harmonic, which reflects the fundamental frequency of the vocal folds’ vibration. Separation of the bubbles 10 cm under water surface starts when the buoyancy force acting on the bubble is approximately equal to the aerodynamic force in the tube.
In vivo measurements of air pressure, vocal folds vibration and acoustic characteristics of phonation into a straw and a resonance tube used in vocal exercising.
Radolf, Vojtěch ; Laukkanen, A. M. ; Horáček, Jaromír ; Veselý, Jan ; Liu, D.
The study investigates the differences between three most widely used methods in voice training and therapy: Phonation into a glass resonance tube (1) the outer end in the air, (2) the outer end submerged 2-10 cm below water surface in a bowl (‘water resistance therapy’ with bubbling effect), and (3) phonation into a very thin straw. One female speech trainer served as subject. Acoustic samples, electroglottographic signals and both mean and dynamic airpressures in the mouth cavity were registered for repetitions of [pu:pu], and for phonation into the tubes, while the outer end was randomly shuttered, in order to get an estimate of subglottic pressure. Both phonation threshold and ordinary, most comfortable phonation were recorded.
Experimental investigation of air pressure, acoustic characteristics and vibrations of vocal folds on a complex physical model of phonation in humans.
Horáček, Jaromír ; Radolf, Vojtěch ; Bula, Vítězslav ; Veselý, Jan ; Laukkanen, A. M.
The contribution aims to provide material that can be used in development of more realistic physical as well as theoretical models of voice production. The experimental set-up, methodology and the results of measurement of airflow rate, subglottal, oral and generated acoustic air pressures are presented together with the simultaneously measured flow-induced vibrations of a vocal folds replica, made of soft silicon rubber, and recorded by a high speed camera. The data were measured during a ‘soft’ phonation just above the phonation onset, given by the phonation threshold airflow rate, and during a ‘normal’ phonation for the airflow rate of about three times higher. A model of the human vocal tract in the position for production of vowel [u:] was used and the flow resistance was raised by phonating into a glass resonance tube either in the air or having the other end of the tube submerged under water, and by phonating into a narrow straw. The results for the pressures presented in time and frequency domain are comparable with the physiological ranges and limits measured in humans for ordinary phonation and for production of vocal exercises used in voice therapy.
Experimental investigation of air pressure and acoustic characteristics of human voice. Part 1: Measurement in vivo
Horáček, Jaromír ; Radolf, Vojtěch ; Bula, Vítězslav ; Veselý, Jan ; Laukkanen, A. M.
This contribution is aimed to provide material that can be used to develop more realistic physical models of voice production. The experimental methodology and the results of measurement of subglottal, oral (substitute for subglottic) and acoustic air pressure (captured at a distance of 20 cm in front of the subject’s mouth) are presented. The data were measured during ordinary speech production and when the acoustic impedance and mean supraglottal resistance were raised by phonating into differently sized tubes in the air and having the other end submerged under water. The results presented in time and frequency domain show the physiological ranges and limits of the measured pressures in humans for normal and extreme phonation.
Computer simulation of musical singer’s voice based on MRI and acoustic measurement
Radolf, Vojtěch ; Nissinen, A. ; Laukkanen, A. M. ; Havlík, R. ; Horáček, Jaromír
An inverse method was used to estimate the vocal tract geometry as a 1D model on the basis of acoustical characteristics of a professional musical singer before and after vocal exercising. The basic geometrical data for the model were obtained from MRI registered during sustained phonation of vowels [a:], [i:], [u:] produced in naive and professional ways. The model was used for numerical simulations of the voice signals. The results of simulation were compared to the acoustic recordings. According to the results, a singer’s formant cluster was accomplished after exercising. It seemed to be due to lowering of the larynx and lengthening and narrowing of the epilarynx. There was a qualitative agreement between 3D measurements of MRI and the results of modeling. The results suggest that for a singer’s formant cluster a relatively low pharynx over epilarynx ratio may be sufficient, at least if the larynx lowers.

Národní úložiště šedé literatury : Nalezeno 15 záznamů.   1 - 10další  přejít na záznam:
Chcete být upozorněni, pokud se objeví nové záznamy odpovídající tomuto dotazu?
Přihlásit se k odběru RSS.