National Repository of Grey Literature 42 records found  1 - 10nextend  jump to record: Search took 0.01 seconds. 
Factors interacting with bacterial RNA polymerase and their effect on the regulation of transcription initiation
Ramaniuk, Volha ; Krásný, Libor (advisor) ; Lichá, Irena (referee) ; Valášek, Leoš (referee)
(ENGLISH) The bacterial cell needs to regulate its gene expression in response to changing environmental conditions. RNA polymerase (RNAP) is the pivotal enzyme of this process and its activity is controlled by a number of auxiliary factors. Here I focus on RNAP-associating factors involved in regulation of transcription in G+ bacteria:  factors, initiating nucleoside triphosphates (iNTPs), HelD, δ and small RNA Ms1. The main emphasis is on σ factors from Bacillus subtilis. σ factors allow RNAP to specifically recognize promoter DNA. In my first project I set up in vitro transcription systems with purified alternative σ factors, σB , σD , σH , σI from B. subtilis. Using these systems, I studied the effect of initiating NTP concentration ([iNTP]) on transcription initiation. I showed that promoters of alternative  factors are often regulated by [iNTP]. In the next project I comprehensively characterized one of the least explored alternative  factors from B. subtilis, I . I identified ~130 genes affected by I , though only 16 of them were directly affected. Moreover, I discovered that I is involved in iron metabolism. Finally, I showed that I binding requires not only the conserved -35 and -10 hexamers, but also extended -35 and -10 elements located in the spacer region. In collaboration with...
Bacterial RNA polymerase and molecules affecting its function
Jirát Matějčková, Jitka ; Krásný, Libor (advisor) ; Vopálenský, Václav (referee) ; Staněk, David (referee)
RNA polymerase (RNAP) transcribes DNA into RNA and is the only transcriptional enzyme in bacteria. This key enzyme responds to external and internal signals from the cell, resolves the intensity of transcription of individual genes and thus regulates gene expression. RNAP is not only affected by its own subunits, but also protein factors, small molecules or small RNAs (sRNAs). The aim of this Thesis was to contribute to the understanding of the regulation of the RNAP and to add missing fragments to this broad topic. The first part of this Thesis is focused on the influence of selected proteins (δ, YdeB, GreA) on the sensitivity of RNAP to the concentration of the initiating nucleoside triphosphate ([iNTP]) during transcription initiation in Bacillus subtilis. We showed that δ affects the sensitivity of RNAP to [iNTP] at [iNTP]-sensitive promoters, but not at [iNTP]-insensitive promoters neither in vitro nor in vivo. The δ subunit is essential for cell survival during competition with other strains, because it enables the cell to react immediately to changing conditions. Further we showed that YdeB protein does not bind to RNAP in B. subtilis, and has not shown any effect on transcription in vitro. We found that both, GreA and YdeB proteins (unlike δ subunit) were unable to affect RNAP by [iNTP] at...
Mode of action and nature of different susceptibility of bacteria to antibacterial compounds lipophosphonoxins
Havlová, Noemi ; Seydlová, Gabriela (advisor) ; Krásný, Libor (referee)
Lipophosphonoxins (LPPO) are small synthetic antibacterial compounds targeting the cytoplasmic membrane. 1st generation of LPPO (LPPO I) displays an antimicrobial activity against Gram positive bacteria, however they do not show any activity against Gram negatives. After the modification of the iminosugar module (bearing the positive charge) the 2nd generation of LPPO (LPPO II) were synthetized. LPPO II exhibit broadened activity against Gram positive bacteria and also kill Gram negatives, including multiresistant strains. This work focuses on the mode of action of LPPO - the pore-forming activity of these substances is investigated on model membranes as well as in vivo. It also deals with the nature of different activity against Gram positive and Gram negative bacteria using model bacteria Bacillus subtilis and Escherichia coli. The results show that the insensitivity of Gram negative bacteria against LPPO I is probably caused by the different cell wall structure and the presence of the outer membrane that LPPO are almost unable to overcome. Also, the composition of phospholipids in the target membrane influences the antimicrobial activity of LPPO. Higher proportion of phospholipids with neutral charge reduces the LPPO pore-forming activity but is also responsible for low cytotoxicity in...
Effect of promoter sequence on utilization of NAD+ as a substrate for transcription initiation by RNA polymerase
Pinkas, Daniel ; Krásný, Libor (advisor) ; Fišer, Radovan (referee)
For a long time, 5' cap has been thought to be privilege only for eukaryotic organisms in form of 7-methylguanosine cap at the end of mRNA. This was changed only a few years ago. By using methods liquid chromatography and mass spectrometry a new molecule associated with RNA of Escherichia coli has been found. This molecule turned out to be nicotinamide adenine dinucleotide (NAD+ ) attached to 5' end of some small regulatory RNAs (sRNA). Later it has been shown, that RNA polymerase can attach NAD+ at 5' of RNA ab initio, meaning that RNA polymerase can utilize NAD+ as a substrate for transcription initiation. To some extent substrate for transcription initiation is chosen based on promoter sequence. Crucial requirement is presence of adenine at +1 position of DNA coding strand. This thesis focuses on promoter sequence requirements for transcription initiation with NAD+ . As a template for transcription four promoters with different modifications and their chimeras are used: RNA1, Pveg, lac UV5 and rrnB P1. Also, I tried to compare RNA polymerase from E. coli and B. subtilis in terms of transcription initiation substrate usage. Lastly, I describe here isolation of NudC, enzyme that cleaves NAD+ to nicotinamide mononucleotide (NMN) and adenosine monophosphate (AMP). NudC will be used for upcoming...
Regulation of translation iniitiation in yeast saccharomyces cerevisiae
Mašek, Tomáš ; Pospíšek, Martin (advisor) ; Krásný, Libor (referee) ; Hašek, Jiří (referee)
IV. Shrnutí výsledků 63 64 Denaturační RNA elektroforéza v TAE agarózových gelech 60% koncentrace formamidu postačuje k dostatečné denaturaci RNA pro elektroforetickou separaci. Denaturační RNA elektroforéza v TAE pufru vykazuje stejné separační rozlišení RNA molekul jako nejčastěji používaná RNA elektroforéza v MOPSovém pufru a navíc je rychlejší. Denaturační RNA elektroforéza v TAE pufru je použitelná nejen k separaci čisté směsi RNA molekul, ale i směsných vzorků obsahujících také DNA a proteiny (např. buněčných lyzátů). Denaturační RNA elektroforézu v TAE pufru lze kombinovat s kapilárním přenosem a následnou hybridizací (pro blotování lze použít jak konveční 10xSSC pufr, tak levnější 8 mM NaOH). Tento elektroforetický protokol poskytuje levnější a rychlejší alternativu k RNA elektroforéze v MOPSovém pufru, snižuje expozici laboratorních pracovníků toxickým látkám a je vhodný i pro laboratoře, které s RNA běžně nepracují. Rck2 se zapojuje do reprogramování ribozómů během oxidativního stresu Oxidativní stres inhibuje translaci stejnou měrou jako stres osmotický. Lze pozorovat pokles množství aktivně translatujících ribozómů. Tento pokles je proporcionální ke zvětšení ploch 40S, 60S a 80S "vrcholů" v polyzomálním profilu. Aplikace t-BOOH vede k vyšší disociaci polyzomálních komplexů u rck2Δ...
Molecular principles of translation reinitiation in mammals
Hronová, Vladislava ; Valášek, Leoš (advisor) ; Krásný, Libor (referee) ; Staněk, David (referee)
Translation initiation is a multistep process resulting in the formation of the elongation-competent 80S ribosome at the AUG start codon of the mRNA to be translated into a polypeptide chain. This process is orchestrated by numerous proteins called eukaryotic initiation factors (eIFs), out of which the most multitasking one is the eukaryotic initiation factor 3 (eIF3). The main focus of our laboratory aims at the complex characterization of the multisubunit protein eIF3 and the mechanisms of its contribution to various steps of translation initiation. Besides this, we also study one of the gene-specific translational control mechanisms called reinitiation which was, at least in yeast, also shown to be promoted by eIF3. Here I show that the N-terminal domain (NTD) of the largest subunit of yeast eIF3, a/Tif32, plays an important role not only in anchoring the eIF3 complex to the 40S small ribosomal subunit but it also critically contributes to mRNA recruitment to the 43S preinitiation complexes in vivo. The mRNA stabilization role of the a/Tif32-NTD at the mRNA exit channel of the 40S subunit was further confirmed in our following study by biophysical experiments. There, using in vivo approaches, we also demonstrated that mRNAs with longer 5'UTRs are more dependent on the stabilization role of the...
Gene regulation in four dimensions
Vaňková Hausnerová, Viola ; Lanctôt, Christian (advisor) ; Převorovský, Martin (referee) ; Krásný, Libor (referee)
Transcription has turned out to be a discontinuous process when imaged at a single cell level. This observation is referred to as transcriptional bursting or pulsing and has been detected in a variety of organisms ranging from bacteria to mammalian cells. The dynamics of transcriptional pulsing are influenced by the properties intrinsic to the transcriptional process, as well as by upstream factors: chromatin environment, signalling molecules, cell cycle stage etc. In the first part of this thesis, we focused on the regulation of transcriptional pulsing in the nucleolus. Using imaging of living cells, we detected pulsatile transcription of a transgene with nucleolar localization whose expression was mediated by RNA polymerase II. In the second part of the thesis, we investigated the relationship between chromatin decondensation and transcriptional dynamics. We used hyperosmotic medium to induce global condensation of chromatin and revealed that upon chromatin decondensation, a transient spike in transcriptional intensity occurs in induvial living cells. Next, we analysed expression of TFRC and POLR2A genes in several cell cycle stages using single molecule RNA FISH. We detected increase in both frequency and size of transcriptional pulses during a limited time window which coincided with chromatin...
The role of pre-mRNA splicing in human hereditary diseases
Malinová, Anna ; Staněk, David (advisor) ; Vanáčová, Štěpánka (referee) ; Krásný, Libor (referee)
U5 small ribonucleoprotein particle (U5 snRNP) is a crucial component of the spliceosome, the complex responsible for pre-mRNA splicing. Despite the importance of U5 snRNP, not much is known about its biogenesis. When we depleted one of the core U5 components, protein PRPF8, the other U5-specific proteins do not associate with U5 snRNA and the incomplete U5 was accumulated in nuclear structures known as Cajal bodies. To further clarify the role of PRPF8 in U5 snRNP assembly, we studied PRPF8 mutations that cause an autosomal dominant retinal disorder, retinitis pigmentosa (RP). We prepared eight different PRPF8 variants carrying RP-associated mutations and expressed them stably in human cell culture. We showed that most mutations interfere with the assembly of snRNPs which consequently leads to reduced efficiency of splicing. The mutant PRPF8 together with EFTUD2 are stalled in the cytoplasm in a form of U5 snRNP assembly intermediate. Strikingly, we identified several chaperons including the HSP90/R2TP complex and ZNHIT2 as new PRPF8's interactors and potential U5 snRNP assembly factors. Our results further imply that these chaperons preferentially bind the unassembled U5 complexes and that HSP90 is required for stability of...
Domain structure and function of primary bacterial sigma factors
Kálalová, Debora ; Krásný, Libor (advisor) ; Roučová, Kristina (referee)
Transcription initiation is one of the crucial steps of gene expression. A multisubunit enzyme RNA polymerase (RNAP) transcribes the genetic information from DNA to RNA. However, RNAP itself is unable to recognize a specific promoter and initiate transcription. For this purpose, bacteria have a protein called σ factor, which binds to RNAP and together form the RNAP holoenzyme. In this thesis I describe the mechanism of bacterial transcription and the structure, function and regulation of σ factors. I focus mainly on the primary σ factors of two important model species, namely gramnegative Escherichia coli and grampositive Bacillus subtilis. I describe them in the context of alternative σ factors, and I point out their differences in structure, function and regulation. Key words: RNA polymerase, primary σ factors, transcription, bacteria, Bacillus subtilis, Escherichia coli

National Repository of Grey Literature : 42 records found   1 - 10nextend  jump to record:
Interested in being notified about new results for this query?
Subscribe to the RSS feed.