National Repository of Grey Literature 14 records found  1 - 10next  jump to record: Search took 0.00 seconds. 
Permanent Magnet Assisted Synchronous Reluctance Motor
Knebl, Ladislav
In these days, there is big emphasis put on electric motors efficiency, the best efficiency can be achieved with surface mounted permanent magnet (SMPM) motor. The SMPM motors efficiency may be even in cases of small machines, higher than 90%. Unfortunately this kind of motor is expensive, because neodymium magnets are used. The synchronous reluctance assisted motor (SRAM) topology is one of many possible machines that might in some cases replace the SMPM machines. Because cheap ferrite magnets are used and still similar characteristics can be achieved.
Optimization Of Interior Permanent Magnet Synchronous Motor Using Evolutionary Optimization Algorithm
Knebl, Ladislav
The development of the interior permanent magnet synchronous motor has drawn a big interest over the last decade. This is due to the use of this kind of machine in the automotive industry, thanks to the machine high efficiency and high overload capability compare to other machine types. Using artificial intelligence or evolutionary optimization algorithms is possible to optimize the motor with maximum efficiency, lowest torque ripple and highest average torque, because a huge ammount and variety of geometry combinations are tested. This paper is focused on the overview of generally used optimization algorithms and optimization is demonstrated on Self-Organizing Migrating Algorithm (SOMA). Cost function and weight coefficients are also presented and used for optimization.
Design of high speed permanent magnet synchronous machine
Přibyl, Daniel ; Knebl, Ladislav (referee) ; Ondrůšek, Čestmír (advisor)
Bachelor's thesis is focused on problematic of synchronous machines with permanent magnets. In this thesis is described the principle of function and design solution of the machine. Furthermore it deals with stator winding, possibility of placing magnets on the rotor and used types of permanent magnets. In the part of solution of the assignment of work is made design of synchronous machine with permanent magnets with output 1,5 MW and rated speed 15000 rpm. The machine is designed with inner rotor and magnets placed on surface. The solution includes design of dimensions of stator including design of slot, design of winding and design of permanent magnet. The whole analytical design was finally compared with the results of the analysis in the RMxprt program. For machine was calculated 2D magnetic field by finite element method in Ansys Maxwell. Finally was calculated critical speed.
Electromagnetic calculation of an electrical machine for Aerospace applications
Halašta, Vítězslav ; Knebl, Ladislav (referee) ; Bárta, Jan (advisor)
This bachelor thesis deals with the electromagnetic calculation of an electrical machine for aerospace applications. Description of the state of art trends that are currently being used in the aircraft industry and requirements for such machines were formulated. Further, electromagnetic model of the machine designed for aerospace applications is created and the electromagnetic calculation using the finite element method is performed. A design process and a comparison of machines designed for this application is also included. The modeled machine was simulated at no load, rated load and faulty condition. Reasons behind the choice of permanent magnet synchronous motor alongside particular steps in design required for machine application in aerospace are presented in the conclusion. There is also discussed, whether the modeled machine is correctly designed for aerospace application.
Design of synchronous linear motor
Jindra, Michal ; Mach, Martin (referee) ; Knebl, Ladislav (advisor)
Proposed thesis is focused on synchronous linear motor with an iron core, the design of an equivalent magnetic circuit and its calculation. The work describes the principle of a synchronous linear motor with permanent magnets, U-channel linear motor and a tubular linear motor. For these types of linear motors, the design solution is described and general advantages and disadvantages are mentioned. The losses generated in the motors are also described. The work introduces various methods of engine calculations that can be used for subsequent application to a particular type of motor. Subsequently, one of the methods is selected and used to calculate the motor. The last part is the evaluation and comparison of results.
Design of high speed induction motor
Čech, Jiří ; Knebl, Ladislav (referee) ; Ondrůšek, Čestmír (advisor)
The first part of this paper presents general information about electromagnetic designing of an induction motor. Focus is on explanation of individual designing aspects and their effects on final motor parametres. Design principles for magnetic cores, slot dimensioning, stator winding and rotor squirrel cage are presented. Second chapter presents complete analytical computation of a given induction motor. Firstly several parametres need to be selected. Then sizing of stator and rotor is conducted. Secondly steady state equivalent parametres and related operating characteristics are computed. Following chapter consinsts of three final designs. In the last chapter results of mechanical analysis are presented.
Design of synchronous linear motor thermal network
Čech, Jan ; Toman, Marek (referee) ; Knebl, Ladislav (advisor)
The first part of this thesis deals with the study of linear motors. The introduction of the thesis deals with the brief description of the linear motor, including its accessories. This part explains principle of linear motors, their general advantages and disadvantages. The next section contains an overview and division of the currently used linear motors. The second part deals with the theoretical description of forms of heat transfer. The third part of the thesis deals with the design of an equivalent thermal circuit model of a linear iron-core linear motor with permanent magnet. Hereafter, the proposed design will be used to calculate the temperatures of the individual motor units. The temperatures are later compared with the results obtained with finite element method.
Rotor design of a Line-Start Synchronous Reluctance Machine for Industrial Applications
Žíla, Jakub ; Knebl, Ladislav (referee) ; Bárta, Jan (advisor)
This diploma thesis deals with design of rotor of synchronous reluctance machines. There is a theoretical description of rotor geometry of synchronous reluctance machine that respects natural flow of magnetic flux inside complete rotor. The parametric model of rotor is made with usage of ANSYS Maxwell and Matlab software. Furthermore, the parameters of the machines are confirmed using the same program. Finally, changes of motor parameters are observed in connection with different rotor geometries.
Optimization of a small induction machine.
Jedlička, Lukáš ; Knebl, Ladislav (referee) ; Mach, Martin (advisor)
The goal of this thesis is to improve efficiency of an induction motor. In the first part, the working principle is described. The next part deals with the origin of losses and possible solutions to decreasing losses without impacting the production possibles. The third part of the thesis is focused on the calculation of parameters of a small serial production motor. In the fourth part, these parameters are verified using the analytical tool RMxprt which is included in Ansys Maxwell. The fifth chapter deals with the optimization using Matlab genetic algorithm. In the final chapter, the design modifications are verified using the method of finite element Ansys Maxwell 2D.
Stator Windings Currents Analysis Of The Ipm Machine Under Short-Circuit Conditions
Knebl, Ladislav
The development of the synchronous motors with permanent magnets is, mostly thanks to the legislation pressure to achieve the highest efficiency in electric drives, experiencing raising interest. Since the number of motors used in the industry is growing year by year, it is reasonable to investigate the motor behavior under faulty conditions, such as short-circuit conditions. This paper deals with the stator current analysis of interior permanent magnet synchronous motor under the short-circuit condition, both short-circuit in one phase and symmetrical three-phase short-circuit.

National Repository of Grey Literature : 14 records found   1 - 10next  jump to record:
Interested in being notified about new results for this query?
Subscribe to the RSS feed.