National Repository of Grey Literature 55 records found  1 - 10nextend  jump to record: Search took 0.00 seconds. 
A method for the use of nanofiber scaffolds and stem cells for the treatment of severe damages of the ocular surface
Zajícová, Alena ; Javorková, Eliška ; Holáň, Vladimír
The method describes a new therapeutic approach for the treatment of severe ocular injuries in veterinary medicine. The protocol is based on a cultivation of stem cells and their transfer using nanofiber scaffolds onto damaged ocular surface. This method can be used in the cases when other available treatment options are not sufficient or cannot be used.
Rössner ml., Pavel ; Vrbová, Kristýna ; Strapáčová, S. ; Rössnerová, Andrea ; Ambrož, Antonín ; Brzicová, Táňa ; Líbalová, Helena ; Javorková, Eliška ; Zajícová, Alena ; Holáň, Vladimír ; Kulich, P. ; Večeřa, Zbyněk ; Mikuška, Pavel ; Coufalík, Pavel ; Křůmal, Kamil ; Čapka, Lukáš ; Dočekal, Bohumil ; Šerý, Omar ; Machala, M. ; Topinka, Jan
We analyzed gene expression changes in the lungs and the immunological response in splenocytes of mice exposed by inhalation of ZnO nanoparticles - NP. Adult female ICR mice were treated for three days and three months, respectively. Analysis of differential expression in genes involved in oxidative stress was conducted using quantitative RT-PCR. The potential immunotoxic and immunomodulatory effects of ZnO NP were analyzed by phenotyping and cytokine production by splenocytes after three months exposure. Three days exposure resulted in down-regulation of GCLC, GSR, HMOX-1, NQO-1, NF-kB2, PTGS2 and TXNRD1 mRNA expression, three months exposure increased the expression of these genes. Three months exposure caused a significant decrease in the percentage of granulocytes in the spleen cells, and affected the production of IL-10 and IL-6 by lipopolysaccharide-stimulated leukocytes. In summary, our study revealed changes in the expression of genes involved in the oxidative stress response following acute ZnO NP exposure. Subchronic ZnO NP exposure induced immunomodulatory effects in the spleen.
Immunomodulatory mechanisms of stem cells and their use for therapy of ocular disorders
Heřmánková, Barbora ; Holáň, Vladimír (advisor) ; Heissigerová, Jarmila (referee) ; Indrová, Marie (referee)
Stem cell-based therapy represents a perspective approach for the treatment of many so far incurable diseases. Mesenchymal stem cells (MSC) are currently the most studied stem cells. They are able to differentiate into different cell types, to produce growth and trophic factors and can suppress the functions of cells of the immune system. During the study of the immunomodulatory properties of MSC, we focused on their effect on B cells. The mechanism of impact of interferon-γ (IFN-γ) on MSC and their effect on the production of interleukin 10 (IL-10) by B cells was analysed. We have demonstrated that MSC-treated with IFN-γ inhibit production of IL-10 by activated B cells via the cyclooxygenase-2 involving pathway. Due to their regenerative and immunomodulatory properties, MSC can be for treatment of many diseases. In this study we focused on the disease and damage of the eye. The limbal stem cells (LSC) are used for the treatment of damaged ocular surface, however their isolation is difficult and they can not be used in all cases of damage. Appropriate candidates in these cases are MSC. Therefore we have decided to compare the therapeutic potential of LSC and MSC isolated from bone marrow or adipose tissue. The study have shown that MSC isolated from bone marrow have a similar regenerative effect on...
Potential of stem cell therapy for diabetic retinopathy
Palacká, Kateřina ; Holáň, Vladimír (advisor) ; Tlapáková, Tereza (referee)
Diabetic retinopathy is retinal disease causing irreversible cell damage and consequently a loss of vision. Current treatment protocols have many limitations and are associated with serious site effects. A possible treatment options for retinal degenerative diseases is a use of stem cells. There are different types of stem cells. These include embryonal stem cells, induced pluripotent stem cells and cells from an adult organism, among which we can include mesenchymal stem cells (MSCs). MSCs can be found in almost all tissues of the adult organism. MSCs can migrate to the site of damage, regulate development of inflammation in retina, suppress the formation of fibrovascular scars and replace damaged cells such as nerve cells, photoreceptors and epithelial pigment cells. Application of MSCs could be a promising treatment for degenerative retinal diseases.

National Repository of Grey Literature : 55 records found   1 - 10nextend  jump to record:
See also: similar author names
2 HOLAŇ, Viktor
Interested in being notified about new results for this query?
Subscribe to the RSS feed.