Národní úložiště šedé literatury Nalezeno 28 záznamů.  1 - 10dalšíkonec  přejít na záznam: Hledání trvalo 0.00 vteřin. 
Platební regulační mechanismus jako zdroj zvyšování platů ve zdravotnictví
Grim, Jiří
Princip zdravotního pojištění předpokládá, že se pacient v případě potřeby obrátí na lékaře, který mu poskytne odbornou pomoc, přičemž výkon lékaře, výdaje za léky a doplňující vyšetření proplácí zdravotní pojišťovna. Výsledkem je spontánní nárůst nákladů zdravotní péče u nás dobře známý z devadesátých let. Je zřejmé, že v systému, ve kterém o poskytnuté zdravotní péči musí rozhodovat lékaři v kontaktu s pacienty a její náklady následně hradí zdravotní pojišťovny, chybí záporná zpětná vazba, která by působila proti růstu nákladů. Důsledkem této hrubé systémové chyby je trvalý tlak na zvyšování výdajů za poskytnutou zdravotní péči a hrozící platební neschopnost nutí zdravotní pojišťovny zavádět regulační opatření k omezení růstu nákladů.
Feasibility Study of an Interactive Medical Diagnostic Wikipedia
Grim, Jiří
Considering different application possibilities of product distribution mixtures we have proposed three formal tools in the last years, which can be used to accumulate decision-making know-how from particular diagnostic cases. First, we have developed a structural mixture model to estimate multidimensional probability distributions from incomplete and possibly weighted data vectors. Second, we have shown that the estimated product mixture can be used as a knowledge base for the Probabilistic Expert System (PES) to infer conclusions from definite or even uncertain input information. Finally we have shown that, by using product mixtures, we can exactly optimize sequential decision-making by means of the Shannon formula of conditional informativity. We combine the above statistical tools in the framework of an interactive open-access medical diagnostic system with automatic accumulation of decision-making knowledge.
Approximating Probability Densities by Mixtures of Gaussian Dependence Trees
Grim, Jiří
Considering the probabilistic approach to practical problems we are increasingly confronted with the need to estimate unknown multivariate probability density functions from large high-dimensional databases produced by electronic devices. The underlying densities are usually strongly multimodal and therefore mixtures of unimodal density functions suggest themselves as a suitable approximation tool. In this respect the product mixture models are preferable because they can be efficiently estimated from data by means of EM algorithm and have some advantageous properties. However, in some cases the simplicity of product components could appear too restrictive and a natural idea is to use a more complex mixture of dependence-tree densities. The dependence tree densities can explicitly describe the statistical relationships between pairs of variables at the level of individual components and therefore the approximation power of the resulting mixture may essentially increase.
Evaluation of Screening Mammograms by Local Structural Mixture Models
Grim, Jiří ; Lee, G. L.
We consider the recently proposed evaluation of screening mammograms by local statistical models. The model is defined as a joint probability density of inside grey levels of a suitably chosen search window. We approximate the model density by a mixture of Gaussian densities. Having estimated the mixture parameters we calculate at all window positions the corresponding log-likelihood values which can be displayed as grey levels at the respective window centers. The resulting log-likelihood image closely correlates with the original mammogram and emphasizes the structural details. In this paper we try to enhance the log-likelihood images by using structural mixture model capable of suppressing the influence of noisy variables.
Fast Dependency-Aware Feature Selection in Very-High-Dimensional Pattern Recognition Problems
Somol, Petr ; Grim, Jiří
The paper addresses the problem of making dependency-aware feature selection feasible in pattern recognition problems of very high dimensionality. The idea of individually best ranking is generalized to evaluate the contextual quality of each feature in a series of randomly generated feature subsets. Each random subset is evaluated by a criterion function of arbitrary choice (permitting functions of high complexity). Eventually, the novel dependency-aware feature rank is computed, expressing the average benefit of including a feature into feature subsets. The method is efficient and generalizes well especially in very-high-dimensional problems, where traditional context-aware feature selection methods fail due to prohibitive computational complexity or to over-fitting. The method is shown well capable of over-performing the commonly applied individual ranking which ignores important contextual information contained in data.
Diagnostické vyhodnocování screeningových mamogramů pomocí lokálních texturních modelů
Grim, Jiří ; Somol, Petr
Předmětem práce je návrh diagnostického vyhodnocování screeningových mamogramů pomocí lokálního statistického modelu. Cílem metody je zvýraznění diagnosticky významných detailů mamogramu. Výsledkem zpracování je tzv. věrohodnostní obraz původního mamogramu, který by v kombinaci s původním snímkem mohl usnadnit práci radiologa.

Národní úložiště šedé literatury : Nalezeno 28 záznamů.   1 - 10dalšíkonec  přejít na záznam:
Viz též: podobná jména autorů
1 Grim, Jan
Chcete být upozorněni, pokud se objeví nové záznamy odpovídající tomuto dotazu?
Přihlásit se k odběru RSS.