National Repository of Grey Literature 20 records found  1 - 10next  jump to record: Search took 0.00 seconds. 
Machine Learning for Question Answering in Czech
Pastorek, Peter ; Fajčík, Martin (referee) ; Smrž, Pavel (advisor)
This Master's thesis deals with teaching neural network question answering in Czech. Neural networks are created in Python programming language using the PyTorch library. They are created based on the LSTM structure. They are trained on the Czech SQAD dataset. Because Czech data set is smaller than the English data sets, I opted to extend neural networks with algorithmic procedures. For easier application of algorithmic procedures and better accuracy, I divide question answering into smaller parts.
Big Data Processing in Industry 4.0
Trubka, Jakub ; Fajčík, Martin (referee) ; Smrž, Pavel (advisor)
This thesis deals with collecting, processing, and storing big data obtained from monitoring industry machines. The designed and implemented system focuses on extensibility and scalability attributes of the realised solution. The survey part of the text briefly describes existing solutions and discusses collecting and processing big industrial data. A special attention is also paid to the big data storage technology. The crucial part of the thesis then refers to the design and realisation of the system and its individual components, as well as its testing and final evaluation.
Estimation of Emotions from a Text
Dufková, Aneta ; Fajčík, Martin (referee) ; Szőke, Igor (advisor)
This thesis describes a process of estimation of emotions from a text using machine learning. The process starts with research of existing methods, continues with choosing a suitable method and experimenting. It uses several datasets, combines them and tests different techniques of text preprocessing. The result is a web interface which uses the pretrained model and allows to estimate emotions from Twitter posts.
Stylized Natural Language Generation in Dialogue Systems
Bolshakova, Ksenia ; Kesiraju, Santosh (referee) ; Fajčík, Martin (advisor)
Tato práce se zabývá přístupy generování přirozeného jazyka v různých stylech. Kromě toho také zkoumá schopnost modelů řídit sílu projevu stylu v generované sekvenci. Model pro generování přirozeného jazyka byl implementován  s několika aspekty projevů stylu, konkrétně poezie, humor, sentiment a specifičnost. Jako strategie dekódování jazykových modelů byly použity Beam search a Nucleus sampling. Navrhované experimenty jsou založeny na váženém dekódování. Zejména pravděpodobnostní funkce vypočítaná pomocí jazykového modelu, který generuje odpověď, je modifikována dvěma přístupy. První přístup používá ručně vytvořené příznaky, například NIDF. Druhý používá neurální pravděpodobnostní jazykové modely natrénované na stylistických datových sadách. Architektura modelu je prezentována ve dvou verzích. První variantou je model založený na LSTM a druhá varianta využívá nejmodernější předpřipravené modely BART a GPT-2 pro generování textu. Experimenty odhalily problém, že i současné nejmodernější modely trpí špatným odhadem kompromisu mezi stylem a kontextem. Jinými slovy, čím více se styl projeví v generované sekvenci, tím méně se vztahuje k tématu diskutovanému v dialogu.
Non-Supervised Sentiment Analysis
Karabelly, Jozef ; Landini, Federico Nicolás (referee) ; Fajčík, Martin (advisor)
Cieľom tejto práce je odprezentovať prehľad aktuálneho výskumu v oblasti analýzy sentimentu bez priameho učiteľa a identifikovať potenciálne smery výskumu. Okrem toho práca predstavuje novú účelovú funkciu na predtrénovanie, ktorá nevyžaduje priamy supervíziu. Rozšírenie modelu predstavenou účelovou funkciou, pridanie vrstvy neurónovej siete a následné samotné natrénovanie ukazujú sľubné výsledky. Rozšírený model naznačil schopnosť zakódovať abstraktné reprezentácie celkového sentimentu, emócií a sarkazmu. Pre účely použitia predstavenej účelovej funkcie bol nazbieraný vlastný dataset. Na základe experimentov vykonaných s rozšíreným modelom sú odprezentované možné smery výskumu a budúce vylepšenia.
Brno Communication Agent
Jurkovič, Juraj ; Fajčík, Martin (referee) ; Smrž, Pavel (advisor)
The goal of this thesis is explore and subsequently apply techniques and technical solutions in development of information agents. Thesis primarily focuses on solving individual sub tasks using state of the art systems, interconnecting these systems, their adoption for specific domain and implementation of individual modules of communication agent system. User interface is based on multi-platform chat application Telegram. Information extraction from user input is executed by Dialogflow. Several external services are used for user request fulfillment. Elasticsearch is used for searching structured data. For answering open domain questions from free text we use R-net implementation. The resulting can have both ,its knowledge base and range of requests it can fulfill, easily extended and can be deployed to chat platform of choice.
Exploring Contextual Information in Neural Machine Translation
Jon, Josef ; Fajčík, Martin (referee) ; Smrž, Pavel (advisor)
Tato práce se zabývá zapojením mezivětného kontextu v neuronovém strojovém překladu (NMT). Dnešní běžné NMT systémy překládají jednu zdrojovou větu na jednu cílovou větu, bez jakéhokoliv ohledu na okolní text. Tento přístup je nedostačující a neodpovídá způsobu práce lidských překladatelů. Pro mnoho jazykových párů je dnes za splnění určitých (přísných) podmínek výstup NMT nerozeznatelný od lidského překladu. Jedna z těchto podmínek je, že hodnotitelé skórují přeložené věty nezávisle, bez znalosti kontextu. Při hodnocení celých dokumentů je výstup NMT stále hodnocen hůře, než lidský překlad, i v případech, kdy byl na úrovni jednotlivých vět preferován. Tato zjištění jsou motivací pro výzkum zapojení kontextu na úrovni dokumentu v NMT, je totiž možné, že na úrovni vět již není mnoho prostoru ke zlepšení, alespoň pro jazykové páry a domény bohaté na trénovací data. Tato práce shrnuje současné přístupy zapojení kontextu do překladu, několik z nich je implementováno a vyhodnoceno v rámci obecné překladové kvality i na překladu specifických fenoménů souvisejících s kontextem. Pro zhodnocení kvality jednotlivých systému byla ručně vytvořena testovací sada pro překlad z anglického do českého jazyka.
Machine Comprehension Using Commonsense Knowledge
Daniš, Tomáš ; Landini, Federico Nicolás (referee) ; Fajčík, Martin (advisor)
V tejto práci je skumaná schopnosť používať zdravý rozum v moderných systémoch založených na neurónových sieťach. Zdravým rozumom je myslená schopnosť extrahovať z textu fakty, ktoré nie sú priamo spomenuté, ale implikuje ich situácia v texte. Cieľom práce je poskytnúť náhľad na súčasný stav výskumu v tejto oblasti a nájsť sľubné výskumné smery do budúcnosti. V práci je implementovaný jeden z najmodernejších modelov na odpovedanie na otázky a je ďalej použitý na experimenty v rôznych situáciách. Narozdiel od starších prístupov, tento model dosahuje porovnateľné výsledky s najlepšími známymi modelmi aj keď jeho architektúra neobsahuje žiadne prvky zamerané konkrétne na zlepšenie schopnosti zdravo uvažovať. Taktiež boli nájdené štatistické artefakty v populárnej sade dát s otázkami vyžadujúcimi zdravé uvažovanie. Tieto artefakty môžu byť použité štatistickými modelmi na nájdenie správnej odpovede aj v prípadoch, kedy by to nemalo byť možné. Na základe týchto zistení sú v práci poskytnuté odporúčania a návrhy pre výskum do budúcnosti.
Computer as an Intelligent Partner in the Word-Association Game Codenames
Jareš, Petr ; Fajčík, Martin (referee) ; Smrž, Pavel (advisor)
This thesis solves a determination of semantic similarity between words. For this task is used a combination of predictive model fastText and count based method Pointwise Mutual Information. Thesis describes a system which utilizes semantic models for ability to substitue a player in a word association game Codenames. The system has implemented game strategy enabling use of context information from the game progression to benefit his own team. The system is able to substitue a player in both team roles.
Automated Detection of Hate Speech and Offensive Language
Štajerová, Alžbeta ; Žmolíková, Kateřina (referee) ; Fajčík, Martin (advisor)
This thesis discusses hate speech and offensive language phenomenon, their respective definitions and their occurrence in natural language. It describes previously used methods of solving the detection. An evaluation of available data sets suitable for the problem of detection is provided. The thesis aims to provide additional methods of solving the detection of this issue and it compares the results of these methods. Five models were selected in total. Two of them are focused on feature extraction and the remaining three are neural network models.  I have experimentally evaluated the success of the implemented models. The results of this thesis allow for comparison of the typical approaches with the methods leveraging the newest findings in terms of machine learning that are used for the classification of hate speech and offensive language.

National Repository of Grey Literature : 20 records found   1 - 10next  jump to record:
Interested in being notified about new results for this query?
Subscribe to the RSS feed.