National Repository of Grey Literature 158 records found  1 - 10nextend  jump to record: Search took 0.00 seconds. 
Geopolymers Incorporating Wastes and Composites Processing
Taveri, Gianmarco ; Perná,, Ivana (referee) ; Pouchlý, Václav (referee) ; Dlouhý, Ivo (advisor)
Buildings construction and realization of public infrastructures have always been a primary need in the human society, developing low cost and user-friendly materials which also encounter safety and durability requirements. Portland cement is the most used material in construction industry from the industrial revolution up to date, but the raising concerns related to the climate change are pushing the governments worldwide to replace it with more eco-friendly and greener materials. Geopolymers are considered to be best alternatives to Portland cement in construction industry, but issues related to cost and mechanical properties are still hindering the commercialization of this material. Geopolymer incorporating wastes is one of the solutions. Fly ash, a thermal power plant by-product, and borosilicate glass, a recycled glass from pharmaceutical vials, are suitable candidates in geopolymers activation. NMR and FTIR spectroscopies demonstrated that borates from borosilicate glass are active compounds in geopolymerization, substituting the alumina is its role, composing a B-Al-Si network never observed before. Various fly ash and borosilicate glass weight contents were studied in terms of mechanical properties (compression test, 3-point bending test). It was found that fly ash 55 wt.% and borosilicate 45 wt.% composition activated in 13 M NaOH solution holds the best compressive and flexural strength (45 and 4 MPa respectively), 25% stronger than similar counterparts found in literature. Cellulose fibres in different weight contents were dispersed into the geopolymeric paste to produce geopolymer composites, with the aim to render the material more suitable for structural applications. 3-point bending test showed an improvement of the flexural strength of about 165% (12 MPa), while the chevron notch method displayed a fracture toughness of 0.7 MPam1/2, in line with the results of geopolymer composites found in literature. In this thesis work, fly ash was also successfully densified in 3 M NaOH solution and distilled water through a new method based on hydraulic pressure, called hydro-pressure sintering. This innovative technology involves a drastic reduction of NaOH utilization in geopolymerization, rendering the material more eco-friendly. XRD spectroscopy conducted on produced samples revealed a higher formation of crystals, most likely induced by the application of hydraulic pressure (450 MPa).
Microstructure and properties of YSZ thermal barier coatings deposited onto CoNiCrAlY bond coats remelted by electron beam
Slavíková, Barbora ; Jan, Vít (referee) ; Dlouhý, Ivo (advisor)
The master thesis is dealing with characterization of the structure and properties of the YSZ thermal barrier coating deposited by water hybrid plasma spray technology on the CoNiCrAlY bond coats modified by using electron beam and vacuum annealing. Deposition of the bond coats was performed via high velocity oxy-fuel technology and cold spray. In case of experimental evaluation, the microstructure and chemical composition of the ceramic top coat deposited with powder and suspension feedstock was analyzed. The same analysis procedure was used also for bond coats after electron beam remelting by using two sets of parameters. Furthermore, the changes in microstructure and chemical composition of the remelted and annealed bond coats was evaluated. Eventually, the micromechanical properties of the top coats and the bond coats were measured. The ceramic top coats deposited with powder feedstock exhibited the structure composed by splats, while the top coats deposited in form of suspension showed fine structure with columnar grains. The dendritic structure was observed on remelted bond coats. The annealing process had an influence on the structure in form of coarsened phases and the chemical composition was changed due to diffusion of the elements.
Brumek, J. ; Strnadel, B. ; Dlouhý, Ivo
This work is concerned with the method for predicting stress-strain behavior of material using instrumented indentation technique. High strength low alloy steel with different thermal treatment was taken into the analysis. Heat treatment for the steel was performed to obtain different mechanical properties. Assessment of mechanical properties was done by using inverse technique of the finite element analysis. The results were confronted with conventional test parameters and prediction procedure defined such Automated Ball Indentation Technique (ABIT). Comparison of the material curves shows good agreement with tensile test properties which makes this non-destructive method suitable for industrial application.
Method of Threshold Stress Determination for a Local Approach to Cleavage Fracture
Kotrechko, S. ; Gryshchenko, V. ; Kozák, Vladislav ; Dlouhý, Ivo
The contribution is focused on a new methodology description for determination of threshold stress sigma th, as the third parameter in Beremin local approach to cleavage fracture that is using three-parameter Weibull statistics. Nature of the methodology lies in tensile testing of rounded notched specimens at liquid nitrogen temperature and corresponding calculations. Reactor pressure vessel steel was chosen as an example for the illustration.
Prediction of the Traction Separation Law of Ceramics Using Iterative Finite Element Modelling
Kozák, Vladislav ; Chlup, Zdeněk ; Padělek, P. ; Dlouhý, Ivo
Specific silicon nitride ceramics, the influence of the grain size and orientation on the bridging mechanisms was found. In ceramic matrix composites, crack-bridging mechanisms can provide substantial toughness enhancement coupled with the same and/or increased strength. The prediction of the crack propagation through interface elements based on the fracture mechanics approach and cohesive zone model is investigated. From a number of damage concepts the cohesive models seem to be especially attractive for the practical applications. Within the standard finite element package Abaqus a new finite element has been developed; it is written via the UEL (user’s element) procedure. Its shape can be modified according to the experimental data for the set of ceramics and composites. The element seems to be very stable from the numerical point a view. The shape of the traction separation law for four experimental materials is estimated via the iterative procedure based on the FEM modeling and experimentally determined displacement in indentation experiments, J-R curve is predicted and stability of the bridging law is tested.
Subsized Specimens for Fracture Resistance Characterisation Including Transferability Issues
Dlouhý, Ivo ; Stratil, Luděk ; Šiška, Filip
The contribution is focused on characterization of methods enabling to apply small/subsized specimens for fracture resistance characterization. The applied methods are divided into transition region and upper shelf region. The approaches used in the upper shelf region represent at the same time methods applicable for ductile materials without transition. Relating to subsized samples two basic approaches are applicable: (i) miniaturized samples based on common standard ones and (ii) specific specimens/methods, e.g. small punch test etc. The results described in the paper belong to the first group. For interpretation of data generated under low constraint conditions toughness scaling models and master curve approached are commented. In ductile region, either the sample used generate valid toughness characteristics, or, if not, there is no way how to correct measured data except damage quantification through micromechanical models.
Fracture Toughness of Massively Transformed and Subsequently Heat Treated TiAl Intermetallic Compound
Sakurai, K. ; Hasegawa, M. ; Dlouhý, Ivo
The effects of massive transformation and subsequent heat treatments on the microstructure of Ti-46Al-7Nb-0.7Cr-0.2Ni-0.1Si (mol%) intermetallic compounds are studied. Massive transformation occurs at the center region of the specimen by cooling from alpha single phase state. At the surface side of the specimen, alpha phase has remained. Fine convoluted microstructure with alpha 2, gamma phases and lamellar structure has formed by heating at (alpha + gamma) two phase state after massive transformation. Colony size or grain size is about 25 micrometer. Fine fully lamellar structure is obtained after heat treatment of convoluted microstructure at alpha phase for 60 s. Fracture toughness seems to be increasing with the increase in lamellar colony size. However, some massively transformed specimens show lower toughness due to the formation of microdamage present in samples before the test.
Crack Resistance Characterization in TiAl Intermetallics with Enhanced Toughness
Dlouhý, Ivo ; Stratil, Luděk ; Fukutomi, H. ; Hasegawa, M.
The paper is focused on the analysis of the role of lamellar microstructure in fracture performance of model TiAl intermetallic compound. Coarse lamellar colonies and, at the same time, fine lamellar morphology were prepared by compressive deformation at 1553 K (region of stable alpha phase in TiAl equilibrium diagram) followed by controlled cooling to 1473 K (region of alpha+gamma phase) with delay on this temperature and then cooling down. The fracture toughness was evaluated by means of chevron notch technique. In addition, because of enhanced toughness, crack resistance curves were obtained by load - unload technique of pre-racked beams, namely in two directions of crack propagation relative to lamellar structure. Extensive development of shear ligament toughening mechanism was observed in fracture surfaces leading to quite good fracture toughness thanks to the heat treatment applied.
In-situ Synthesised Intermetallic Compounds in Powder Materials
Hanusová, Petra ; Novák, Pavel (referee) ; Skotnicová, Kateřina (referee) ; Dlouhý, Ivo (advisor)
The mechanical treatment of solids is one of the most common and widely used operations. The volume of solids subjected to chemical treatment is very large too. Therefore, combining these two ways into one seems to be a logical solution. This method is called the mechanochemical processing of materials. Processing materials in this way has many advantages. On the one hand, this processing is economically as well as technologically feasible. Even the materials that not react together in conventional way can be prepare in this way. The mechanochemistry/mechanochemical synthesis utilizes the mechanical energy to activate chemical reactions and structural changes. The aluminothermic reduction reactions induced by the high – energy ball milling are gaining importance because of the potential applications like the synthesis of microcrystalline and nanocrystalline in – situ metal matrix composites. The mechanical activation of the chemical reactions by high energy ball milling often changes the reaction mechanism and produces metastable materials. Changes of reaction mechanisms during mechanical alloying on four different systems were studied. The system was based on this composition: Al - B2O3 - X (X = C, Ti, Nb, Cr). The possibility of another in – situ reactions during spark plasma sintering process (SPS) was also investigated. All systems were mechanically alloyed under the same conditions. After alloying, on each system scanning electron microscopy was performed and qualitative and quantitative analysis was performed using X-ray diffraction. The indentation hardness and the indentation modulus of elasticity were evaluated using nanoindentation. All analyzes were performed after mechanical alloying as well as SPS and the results were compared to each other. Based on the results, a change of reaction mechanisms was proposed for all systems. It has been found that metal matrix composites are formed and, when chromium is used, hybrid composite material reinforced with intermetallic phase and aluminum borate has been developed.
Jurči, P. ; Krum, S. ; Dlouhý, Ivo
The Vanadis 6 tool steel has been coated with CrN, doped with small silver addition, by reactive magnetron sputtering. Some of coated specimens were subsequently vacuum annealed at 500 degrees C. The microstructure of film has been investigated on fracture surfaces of samples. Adhesion was evaluated by scratch-test. Wear resistance was measured using a pin-on-disc method, against alumina and 100Cr6 balls, at ambient and elevated temperatures. Experimental results have shown that the CrN-layers with an addition of 3%Ag have grown in a columnar manner. The addition of small amount of silver makes the adhesion on the substrate better. At an ambient temperature, no positive effect of the Ag-addition to the wear characteristics was found. But, in the testing temperature range 400 - 500 degrees C, significant lowering of friction coefficient and improvement of wear resistance were recorded. This can be attributed to the transport of Ag towards the surface, and thereby reduced friction force.

National Repository of Grey Literature : 158 records found   1 - 10nextend  jump to record:
See also: similar author names
1 Dlouhý, I.
Interested in being notified about new results for this query?
Subscribe to the RSS feed.