National Repository of Grey Literature 2 records found  Search took 0.01 seconds. 
The effect of spark plasma sintering on the porosity and mechanical properties of Ti-15Mo alloy
Terynková, A. ; Kozlík, J. ; Bartha, K. ; Chráska, Tomáš ; Dlabáček, Zdeněk ; Stráský, J.
Metastable β-titanium alloys are receiving much interest for various applications such as aircraft industry and medicine thanks to their excellent mechanical properties and biocompatibility. The common way of preparing the titanium alloys is hindered by its production costs. Powder metallurgy (PM) approach is a promising route for cost-effective fabrication of titanium alloys due to possibility of near net shaping. In this study, binary biomedical Ti-15Mo alloy was prepared by PM. Gas atomized powder was sintered by spark plasma sintering (SPS) above the β-transus temperature of the studied alloy. The compaction of the powders was accomplished by short-time sintering. The effect of the time of sintering on the porosity and the microhardness in centre part as well as in periphery part of the sample was investigated. The samples revealed significant inhomogeneity the porosity increases with the distance from the centre of the specimen. With increasing sintering times the porosity decreases and simultaneously the microhardness increases.
Preparation of multiphase materials with spark plasma sintering
Mušálek, Radek ; Dlabáček, Zdeněk ; Vilémová, Monika ; Pala, Zdeněk ; Matějíček, Jiří ; Chráska, Tomáš
Spark plasma sintering (SPS), also called Field Assisted Sintering Technique (FAST), represents a novel method of preparation of sintered materials from powders. The main advantage of the SPS method is a high achievable heat rate (>200 °C/min) and high sintering temperatures (up to 2200 °C in our laboratory). Combination of high heating rate, rather high pressures (up to 80 MPa) and electric field fluctuations leads to an effective sintering and significant reduction of sintering time for both coarse-grained and nanocrystalline powders. Composite materials may be easily obtained by mixing or layering of different powders. The paper will introduce several examples of multiphase materials sintered by SPS at our institute and the establishment of procedures for routine testing of sub-sized specimens.

Interested in being notified about new results for this query?
Subscribe to the RSS feed.