Národní úložiště šedé literatury Nalezeno 2 záznamů.  Hledání trvalo 0.01 vteřin. 
Advanced plasmonic materials for metasurfaces and photochemistry
Ligmajer, Filip ; Vala,, Milan (oponent) ; Bauch, Martin (oponent) ; Šikola, Tomáš (vedoucí práce)
Plasmonics – the scientific discipline dealing with interaction between light and metallic materials – when coupled with nanotechnology, offers unprecedented possibilities for light control and utilization. The outcome of this combination can be, for example, focusing of light below the diffraction limit, enhancement of emission or absorption of quantum emitters, or extremely sensitive detection of molecules. This thesis deals with possibilities how to utilize plasmonics for flat optical components, so-called metasurfaces, and for photocatalytic applications based on plasmonically generated electrons with high energy, so-called hot electrons. First, the fundamentals of plasmonics are explained and an overview of its most notable applications is provided. Then, three studies are presented, which cover the use of plasmonic nanostructures for the control of light polarization and phase, for creation of dynamically tunable metasurfaces, and for photo-electrochemistry with hot electrons. The common principle of these studies is the use of advanced – or within these fields uncommon – materials, like, for example, vanadium dioxide or transition metal dichalcogenides.
Advanced plasmonic materials for metasurfaces and photochemistry
Ligmajer, Filip ; Vala,, Milan (oponent) ; Bauch, Martin (oponent) ; Šikola, Tomáš (vedoucí práce)
Plasmonics – the scientific discipline dealing with interaction between light and metallic materials – when coupled with nanotechnology, offers unprecedented possibilities for light control and utilization. The outcome of this combination can be, for example, focusing of light below the diffraction limit, enhancement of emission or absorption of quantum emitters, or extremely sensitive detection of molecules. This thesis deals with possibilities how to utilize plasmonics for flat optical components, so-called metasurfaces, and for photocatalytic applications based on plasmonically generated electrons with high energy, so-called hot electrons. First, the fundamentals of plasmonics are explained and an overview of its most notable applications is provided. Then, three studies are presented, which cover the use of plasmonic nanostructures for the control of light polarization and phase, for creation of dynamically tunable metasurfaces, and for photo-electrochemistry with hot electrons. The common principle of these studies is the use of advanced – or within these fields uncommon – materials, like, for example, vanadium dioxide or transition metal dichalcogenides.

Chcete být upozorněni, pokud se objeví nové záznamy odpovídající tomuto dotazu?
Přihlásit se k odběru RSS.