National Repository of Grey Literature 2 records found  Search took 0.00 seconds. 
Phase transformations in ultra-fine grained titanium alloys
Bartha, Kristina ; Stráský, Josef (advisor) ; Kalvoda, Ladislav (referee) ; Vojtěch, Dalibor (referee)
Title: Phase transformations in ultra-fine grained titanium alloys Author: Kristína Bartha Department: Department of Physics of Materials Supervisor of the doctoral thesis: PhDr. RNDr. Josef Stráský, Ph.D., Department of Physics of Materials Abstract: Ti15Mo alloy in a metastable β solution treated condition was processed by high pressure torsion (HPT) and equal channel angular pressing (ECAP). The microstructure after HPT is severely deformed and ultra-fine grained, while ECAP deformation results in rather coarse-grained structure with shear bands containing high density of lattice defects. Two types of thermal treatments - isothermal annealing and linear heating - were carried out for the solution treated condition and both deformed materials. Wide spectrum of experimental techniques was employed to elucidate the differences in phase transformations, especially in α phase precipitation, occurring in deformed and non-deformed material upon thermal treatment. It was shown that the α phase precipitation is accelerated in the deformed materials due to a high density of lattice defects, which provide a dense net of preferred sites for nucleation and also fast diffusion paths necessary for accelerated growth. The enhanced precipitation of the α phase in deformed materials also affects the stability of the ω...
Metastable alloy Ti-15Mo prepared by powder metallurgy
Veverková, Anna ; Bartha, Kristina (advisor) ; Chráska, Tomáš (referee)
This diploma thesis focused on manufacturing and characterization of Ti-15Mo metastable beta-Ti alloy prepared by cryogenic milling and spark plasma sintering. Initial powder was prepared by gas atomization and consequently deformed by cryogenic milling (milled powder). Both initial and milled powders were compacted by spark plasma sintering (SPS) at temperatures from 750 řC to 850 řC. Dependence of microstructure and mechanical properties on the parameters of preparation was studied. During cryo-milling, powder particles significantly changed shape from ball-shaped to disc-shaped. Particles were not refined by milling, but severely plastically deformed. SEM observations showed that all prepared samples contain duplex alpha + beta structure. Volume fraction of alpha phase is significantly higher in the sintered milled powder due to increased beta- transus temperature caused by contamination by oxygen and also due to easier alpha phase precipitation caused by refined microstructure. Maximum microhardness of 350 HV was achieved for both types of sintered powders. High microhardness of sintered initial powder can be attributed to formation of omega phase during cooling, while sintered milled powder is strengthened by refined microstructure and small alpha phase precipitates. Cryogenic milling prior to...

Interested in being notified about new results for this query?
Subscribe to the RSS feed.