National Repository of Grey Literature 1 records found  Search took 0.00 seconds. 
Hybrid Deep Question Answering
Aghaebrahimian, Ahmad ; Holub, Martin (advisor) ; Kordik, Pavel (referee) ; Pecina, Pavel (referee)
Title: Hybrid Deep Question Answering Author: Ahmad Aghaebrahimian Institute: Institute of Formal and Applied Linguistics Supervisor: RNDr. Martin Holub, Ph.D., Institute of Formal and Applied Lin- guistics Abstract: As one of the oldest tasks of Natural Language Processing, Question Answering is one of the most exciting and challenging research areas with lots of scientific and commercial applications. Question Answering as a discipline in the conjunction of computer science, statistics, linguistics, and cognitive science is concerned with building systems that automatically retrieve answers to ques- tions posed by humans in a natural language. This doctoral dissertation presents the author's research carried out in this discipline. It highlights his studies and research toward a hybrid Question Answering system consisting of two engines for Question Answering over structured and unstructured data. The structured engine comprises a state-of-the-art Question Answering system based on knowl- edge graphs. The unstructured engine consists of a state-of-the-art sentence-level Question Answering system and a word-level Question Answering system with results near to human performance. This work introduces a new Question An- swering dataset for answering word- and sentence-level questions as well. Start- ing from a...

Interested in being notified about new results for this query?
Subscribe to the RSS feed.