National Repository of Grey Literature 4 records found  Search took 0.00 seconds. 
Transport processes in hydrogels
Sárová, Michaela ; Kalina, Michal (referee) ; Klučáková, Martina (advisor)
This master's thesis is focused on study of transport processes in hydrogels based on humic acids. For this purpose is used methods unsteady diffusion in cuvettes, which was studied the transport of organic dyes, specifically methylene blue and rhodamine 6G, in agarose hydrogel without the addition and with the addition of individual standards humic acids (Leonardite, Elliott Soil, Suwannee River II and Pahokee Peat). This method is based on spectrophotometric monitoring of concentration changes of dyes depending on space of the cuvette and on time. The aim of this thesis was to investigate the effects of interactions between diffusing dye and the particular type of gel to the resultant effective diffusion coefficient of dye. The experiments indicate that the presence of humic acid in the hydrogel greatly affects the transport of selected dyes.
Transport properties of humic gels
Sárová, Michaela ; Pospíšilová, Ľubica (referee) ; Klučáková, Martina (advisor)
This bachelor’s thesis is focused on study of transport properties of humic gels. For research of these properties was used diffusion method of organic dyes in diffusion cells which is based on spectrophotometric monitoring of concentration changes depending on time. Dyes used in the experiment were specifically methylene blue and rhodamine 6G and diffusion experiments were performed on an agarose hydrogel without the addition of humic acid, with the addition of unmethylated humic acid and then with the addition of methylated humic acid. The aim of this thesis was to investigate the effects of interactions between diffusing dye and the particular type of gel to the resultant effective diffusion coefficient of dye. It has been found that the presence of humic acid in agarose hydrogel greatly influences the transport of dyes.
Transport processes in hydrogels
Sárová, Michaela ; Kalina, Michal (referee) ; Klučáková, Martina (advisor)
This master's thesis is focused on study of transport processes in hydrogels based on humic acids. For this purpose is used methods unsteady diffusion in cuvettes, which was studied the transport of organic dyes, specifically methylene blue and rhodamine 6G, in agarose hydrogel without the addition and with the addition of individual standards humic acids (Leonardite, Elliott Soil, Suwannee River II and Pahokee Peat). This method is based on spectrophotometric monitoring of concentration changes of dyes depending on space of the cuvette and on time. The aim of this thesis was to investigate the effects of interactions between diffusing dye and the particular type of gel to the resultant effective diffusion coefficient of dye. The experiments indicate that the presence of humic acid in the hydrogel greatly affects the transport of selected dyes.
Transport properties of humic gels
Sárová, Michaela ; Pospíšilová, Ľubica (referee) ; Klučáková, Martina (advisor)
This bachelor’s thesis is focused on study of transport properties of humic gels. For research of these properties was used diffusion method of organic dyes in diffusion cells which is based on spectrophotometric monitoring of concentration changes depending on time. Dyes used in the experiment were specifically methylene blue and rhodamine 6G and diffusion experiments were performed on an agarose hydrogel without the addition of humic acid, with the addition of unmethylated humic acid and then with the addition of methylated humic acid. The aim of this thesis was to investigate the effects of interactions between diffusing dye and the particular type of gel to the resultant effective diffusion coefficient of dye. It has been found that the presence of humic acid in agarose hydrogel greatly influences the transport of dyes.

See also: similar author names
2 Šárová, Marie
2 Šárová, Markéta
1 Šárová, Martina
1 Šárová, Monika
Interested in being notified about new results for this query?
Subscribe to the RSS feed.