National Repository of Grey Literature 2 records found  Search took 0.00 seconds. 
Variants of graph labeling problems
Masařík, Tomáš ; Fiala, Jiří (advisor) ; Fellows, Michael R. (referee) ; Hell, Pavol (referee)
This thesis consists of three parts devoted to graph labeling, hereditary graph classes, and parameterized complexity. Packing coloring, originally Broadcasting Chromatic number, assigns natural numbers to vertices such that vertices with the same label are in distance at least the value of the label. This problem is motivated by the assignment of frequencies to the transmitters. We improve hardness on chordal graphs. We proof that packing coloring on chordal graphs with diameter 3 is very hard to approximate. Moreover, we discuss several positive results on interval graphs and on related structural graph parameters. Hereditary graph classes are preserved under vertex deletion. We study graphs that do not contain an induced subgraph H. We prove that 3-coloring is polynomial-time solvable for (P3 + P4)-free and (P2 + P5)-free graphs and thus we have solved the last open cases for the problem on H-free graphs where H has up to 7 vertices. Fair problems are a modification of graph deletion problems, where, instead of minimizing the size of the solution, the aim is to minimize the maximum number of neighbors in the deleted set. We show that those problems can be solved in FPT time for an MSO1 formula parameterized by the size of the formula and the twin cover of the graph. Moreover, we define a basic...
Treewidth, Extended Formulations of CSP and MSO Polytopes, and their Algorithmic Applications
Koutecký, Martin ; Kolman, Petr (advisor) ; Fellows, Michael R. (referee) ; Tantau, Till (referee)
In the present thesis we provide compact extended formulations for a wide range of polytopes associated with the constraint satisfaction problem (CSP), monadic second order logic (MSO) on graphs, and extensions of MSO, when the given instances have bounded treewidth. We show that our extended formulations have additional useful properties, and we uncover connections between MSO and CSP. We conclude that a combination of the MSO logic, CSP and geometry provides an extensible framework for the design of compact extended formulations and parameterized algorithms for graphs of bounded treewidth. Putting our framework to use, we settle the parameterized complexity landscape for various extensions of MSO when parameterized by two important graph width parameters, namely treewidth and neighborhood diversity. We discover that the (non)linearity of the MSO extension determines the difference between fixedparameter tractability and intractability when parameterized by neighborhood diversity. Finally, we study shifted combinatorial optimization, a new nonlinear optimization framework generalizing standard combinatorial optimization, and provide initial findings from the perspective of parameterized complexity

Interested in being notified about new results for this query?
Subscribe to the RSS feed.