Computational Experience with Globally Convergent Descent Methods for Large Sparse Systems of Nonlinear Equations

Lukšan, Ladislav
1996

Dostupný z http://www.nusl.cz/ntk/nusl-33651

Dílo je chráněno podle autorského zákona č. 121/2000 Sb.

Tento dokument byl stažen z Národního úložiště šedé literatury (NUŠL).
Datum stažení: 26.11.2018

Další dokumenty můžete najít prostřednictvím vyhledávacího rozhraní nusl.cz.
Computational Experience with Globally Convergent Descent Methods for Large Sparse Systems of Nonlinear Equations

Ladislav Lukšan Jan Vlček

Technical report No. V-668

April 1996
Computational Experience with Globally Convergent Descent Methods for Large Sparse Systems of Nonlinear Equations

Ladislav Lukšan\(^1\) Jan Vlček

Technical report No. V-668
April 1996

Abstract

This paper is devoted to globally convergent Armijo-type descent methods for solving large sparse systems of nonlinear equations. These methods include the discrete Newton method and a broad class of Newton-like methods based on various approximations of the Jacobian matrix. We propose a general theory of global convergence together with a robust algorithm including a special restarting strategy. This algorithm is based on the truncated preconditioned smoothed CGS method for solving nonsymmetric systems of linear equations. After reviewing 12 particular Newton-like methods, we propose results of extensive computational experiments. These results demonstrate high efficiency of the proposed algorithm.

Keywords

Nonlinear equations, Armijo-type descent methods, Newton-like methods, truncated methods, global convergence, nonsymmetric linear systems, conjugate gradient-type methods, residual smoothing, computational experiments

AMS classification. 62J02

\(^1\)This work was supported by the Grant Agency of the Czech Republic under grant 201/96/0918
1 Introduction

Let f be a continuously differentiable mapping from \mathbb{R}^n to \mathbb{R}^n in the form $f(x) = (f_1(x), f_2(x), \ldots, f_n(x))^T$ and consider the system of nonlinear equations

$$f(x) = 0 \quad (1.1)$$

for some unknown point $x \in \mathbb{R}^n$. Let $J(x)$ denote the Jacobian matrix of the mapping f with

$$(J(x))_{ij} = \frac{\partial f_i(x)}{\partial x_j}, \quad 1 \leq i \leq n, 1 \leq j \leq n.$$

Let $x_1 \in \mathbb{R}^n$, $\overline{F} \geq \|f(x_1)\|$ and $\overline{\Delta} \geq 0$. Denote

$$\mathcal{L}(\overline{F}) = \{x \in \mathbb{R}^n : \|f(x)\| \leq \overline{F}\}$$

and

$$\mathcal{D}(\overline{F}, \overline{\Delta}) = \{x \in \mathbb{R}^n : \|x - y\| \leq \overline{\Delta} \text{ for some } y \in \mathcal{L}(\overline{F})\}$$

Throughout the paper we will use Euclidean vector norm and spectral matrix norm respectively and suppose the following assumptions hold:

A1: The Jacobian matrix $J(x)$ is defined and bounded on $\mathcal{D}(\overline{F}, \overline{\Delta})$, i.e.

$$\|J(x)\| \leq \overline{J}, \quad \forall x \in \mathcal{D}(\overline{F}, \overline{\Delta})$$

A2: The Jacobian matrix $J(x)$ is Lipschitz continuous on $\mathcal{D}(\overline{F}, \overline{\Delta})$, i.e.

$$\|J(y) - J(x)\| \leq \overline{L}\|y - x\| \quad \forall x, y \in \mathcal{D}(\overline{F}, \overline{\Delta})$$

In this paper, we will concentrate on a class of Armijo-type descent methods for the solution to the system (1.1), which generate the sequence of points $x_i \in \mathbb{R}^n$, $i \in \mathcal{N}$, such that

$$x_{i+1} = x_i + \alpha_is_i, \quad i \in \mathcal{N}, \quad (1.2)$$

where $s_i \in \mathbb{R}^n$ is the direction vector determined as an inexact solution of the linear system $A_i s + f_i = 0$ and where the stepsize α_i is selected to guarantee sufficient decrease of $\|f(x_i)\|$. Here A_i is an approximation of the matrix $J_i = J(x_i)$ and $f_i = f(x_i)$.

For investigating Armijo-type descent methods we also use the objective function

$$F(x) = \frac{1}{2}\|f(x)\|^2, \quad (1.3)$$

which has the same local and global minima as the norm $\|f(x)\|$, and denote $F_i = F(x_i)$, $g_i = g(x_i)$, $i \in \mathcal{N}$, where $g(x) = J^T(x)f(x)$ is the gradient of $F(x)$.

While the influence of inexactness of the solution of the system $A_is + f_i = 0$ on global convergence was successfully studied in [6]-[7], [17]-[18], [24], the influence of inexactness
of the approximation \(A_i \) of the Jacobian matrix \(J_i \) has not been considered, with the exception of the case of finite difference approximation of the Jacobian matrix studied in [5], which deals only with local convergence. Therefore, we consider both of these inexactnesses in this paper.

The paper is organized as follows. In Section 2, we propose a class of Armijo-type descent methods and formulate conditions for their global convergence. These conditions (especially assumption A4) cannot be verified in general, but our theory is useful for particular algorithmic realizations. To globalize Newton-like methods, we propose an implementable algorithm, based on restarts, which does not use assumption A4, while it is still globally convergent (if standard assumptions hold). Furthermore, we give a short description of the preconditioned smoothed CGS algorithm used for direction determination. Section 3 is devoted to the description of various Newton-like methods which can be realized by Algorithm 1. Finally, Section 4 contains results of computational experiments which demonstrate high efficiency of Newton-like methods realized by Algorithm 1 with preconditioned smoothed CGS subalgorithm.

2 Descent methods

We begin with the definition of a class of Armijo-type descent methods for the solution to a system of nonlinear equations. More detailed information can be found in Algorithm 1.

Definition 1 We say that the basic method \(x_{i+1} = x_i + \alpha_i s_i, \ i \in \mathcal{N}, \) for solution to a system of nonlinear equations \(f(x) = 0 \) is an Armijo-type descent method \((D)\), if the following conditions hold:

1. **Direction vectors** \(s_i \in \mathbb{R}^n, \ i \in \mathcal{N}, \) are determined so that
 \[
 \| A_i s_i + f_i \| \leq \sigma \| f_i \|, \quad (2.1)
 \]
 where \(0 \leq \sigma < 1. \)

2. **Steplengths** \(\alpha_i > 0, \ i \in \mathcal{N}, \) are chosen so that \(\alpha_i \) is the first member of the sequence \(\alpha_j, \ j \in \mathcal{N}, \) where \(\alpha_0^i = 1 \) and \(\beta \alpha_j^i \leq \alpha_{j+1}^i \leq \beta^{-1} \alpha_j^i \) with \(0 < \beta \leq \overline{\beta} < 1, \) satisfying
 \[
 F_{i+1} - F_i \leq -2 \rho (1 - \sigma) \alpha_i \| f_i \|, \quad (2.2)
 \]
 where \(0 < \rho < 1. \)

Condition (2.2) is closely related to the condition
 \[
 \| f_{i+1} \| - \| f_i \| \leq -\rho (1 - \sigma) \alpha_i \| f_i \|
 \]
 used in [18].

In subsequent considerations, we frequently use the following assumptions:

1. **Matrices** \(J_i^{-1} = J^{-1}(x_i), \ i \in \mathcal{N}, \) are defined and uniformly bounded on the sequence of points \(x_i \in \mathcal{L}(F), \ i \in \mathcal{N}, \) generated by the Armijo-type descent method \((D)\), i.e.
 \[
 \| J_i^{-1} \| \leq 1/\sqrt{n}, \quad \forall i \in \mathcal{N}.
 \]
A4: A3 holds and a constant \(0 \leq \overline{\beta} < (1/2)(1 - \overline{\omega}) \underline{J} \) exist, such that
\[
\| A_i - J_i \| \leq \overline{\beta}, \quad \forall i \in \mathcal{N}.
\]

A5: Matrices \(A_i^{-1}, i \in \mathcal{N} \), are defined and uniformly bounded, i.e.
\[
\| A_i^{-1} \| \leq 1/\underline{A}, \quad \forall i \in \mathcal{N}.
\]

Lemma 1 Let assumption A4 be satisfied and let (2.1) hold. Then a constant \(0 \leq \overline{\eta} < 1 \) exists, such that
\[
\| J_i s_i + f_i \| \leq \overline{\eta} \| f_i \|, \quad \forall i \in \mathcal{N}.
\] (2.3)

Proof Since A4 holds, we can write
\[
\| A_i s_i \| \geq \| J_i s_i \| - \| (A_i - J_i) s_i \| \geq (\underline{J} - \overline{\beta}) \| s_i \|.
\] (2.4)

Similarly, (2.1) implies
\[
\| A_i s_i \| \leq (1 + \overline{\omega}) \| f_i \|.
\] (2.5)

Coupling both these inequalities, we obtain
\[
\| s_i \| \leq \frac{1 + \overline{\omega}}{\underline{J} - \overline{\beta}} \| f_i \|,
\] (2.6)

so that we can write
\[
\| J_i s_i + f_i \| \leq \| A_i s_i + f_i \| + \| (J_i - A_i) s_i \| \leq \overline{\omega} \| f_i \| + \overline{\eta} \| s_i \|
\]
\[
\leq \left(\overline{\omega} + \overline{\eta} \frac{1 + \overline{\omega}}{\underline{J} - \overline{\beta}} \right) \| f_i \| \triangleq \overline{\eta} \| f_i \|.
\]

Using the inequality \(0 \leq \overline{\beta} < (1/2)(1 - \overline{\omega}) \underline{J} \), we get \(0 \leq \overline{\eta} < 1 \).

Lemma 1 shows that the inexactness of the Jacobian matrix can be transformed to the inexactness of the solution to the linear system, so that almost all theoretical results concerning the inexact Newton method (e.g., results from [7] or [18]) can be used when assumption A4 is satisfied. Unfortunately, assumption A4 can be neither verified, if the Jacobian matrix is not known, nor guaranteed in the general case. Therefore, we have to use a different approach for building a globally convergent algorithm. One such possibility is the application of a suitable restarting strategy. If we apply the simple decision

D3: If \(A_i \neq J_i \) and (2.2) has been violated in \(j_1 \) consecutive Armijo steps, then set \(A_i = J_i \) and repeat the iteration,

we obtain either \(A_i = J_i \), so that a theory developed for the inexact Newton method can be used, or \(A_i \neq J_i \) and \(\alpha_i \geq \lambda \beta^1 \), which eliminate assumption A4 from the proof of global convergence (cf. Theorem 1). The following algorithm realizes above ideas:

Algorithm 1

Data:
\[
0 < \beta \leq \overline{\beta} < 1, \ 0 < \rho < 1, \ 0 \leq \overline{\omega} < 1, \ \overline{\gamma} > 0, \ \overline{\eta} > 0, \ 0 < j_1 \leq j_1 \leq j_2, \\
0 < \overline{\eta} \leq \infty \ (\infty \text{ is allowed}).
\]
Step 1: Initiation. Choose an initial point \(x_1 \in \mathbb{R}^n \) and compute the vector \(f_1 := f(x_1) \). Set \(k := 1 \) and \(i := 1 \).

Step 2: Test on convergence. If \(\|f_i\| \leq \varepsilon \) then terminate the computations (the solution is obtained). If \(i > \bar{i} \) then terminate the computations (too many iterations).

Step 3: Direction determination. If \(k = 1 \) then compute the matrix \(J_i := J(x_i) \) and set \(A_i = J_i \). Determine \(0 \leq \omega_i \leq \omega \) and compute the vector \(s_i \in \mathbb{R}^n \) satisfying the condition \(\|A_is_i + f_i\| \leq \omega_i \|f_i\| \), e.g. by Algorithm 2 described below.

Step 4: Backtracking. (a) Set \(\alpha_i^1 := 1 \) and \(j := 1 \).

(b) Set \(x_{i+1} := x_i + \alpha_i^j s_i \) and compute \(f_{i+1} := f(x_{i+1}) \). If (2,2) holds then go to Step 5.

(c) If \(k = 1 \) and \(j > j_2 \), then terminate the computations (the algorithm fails). If \(k > 1 \) and \(j > j_1 \), then set \(k := 1 \) and go to Step 3. Otherwise select the value \(\beta \alpha_i^j \leq \alpha_i^{j+1} \leq \beta \alpha_i^j \), set \(j := j + 1 \) and go to Step 4b.

Step 5: Update. If \(j \leq j_2 \) and \(k \leq k \) then compute the matrix \(A_{i+1} \) using some Newton-like method, set \(k := k + 1 \), \(i := i + 1 \) and go to Step 2. If \(j > j_2 \) or \(k > k \) then set \(k := 1 \), \(i := i + 1 \) and go to Step 2.

Now we prove that the sequence of points \(x_i \in \mathbb{R}^n \), \(i \in \mathbb{N} \), generated by Algorithm 1, is globally convergent provided the failure in Step 4 was not indicated. Moreover, we formulate conditions for eliminating this failure. Since required results cannot be easily found in [7] or [18] we give relatively short complete proofs.

Theorem 1 Let the Jacobian matrix of the function \(f : \mathbb{R}^n \to \mathbb{R}^n \) be defined on \(D(\mathcal{F}, \overline{X}) \) and let \(x_i \in \mathbb{R}^n \), \(i \in \mathbb{N} \), be a sequence generated by Algorithm 1, which does not fail in Step 4. Then \(f_i \to 0 \). If, in addition, A5 holds, then \(x_i \to x^* \) and \(f(x^*) = 0 \).

Proof Using (2.2) we get
\[
\|f_i\|(\|f_{i+1}\| - \|f_i\|) \leq \frac{1}{2}(\|f_{i+1}\| + \|f_i\|)(\|f_{i+1}\| - \|f_i\|) = F_{i+1} - F_i \\
\leq -2\rho(1 - \omega)\alpha_i F_i \leq -\rho(1 - \omega)\beta^2 \|f_i\|^2.
\]
Thus
\[
\|f_{i+1}\| \leq (1 - \rho(1 - \omega)\beta^2)\|f_i\| \quad \triangleq \overline{X}\|f_i\|,
\]

where $0 < \overline{\lambda} < 1$, and therefore
\[
\sum_{i=1}^{\infty} \|f_i\| = \frac{1}{1-\overline{\lambda}} \|f_1\| < \infty,
\]
which implies $f_i \rightarrow 0$. If A5 holds, then $\|A_is_i\| \geq A\|s_i\|$, which together with (2.5) gives
\[
\sum_{i=1}^{\infty} ||x_{i+1} - x_i|| = \sum_{i=1}^{\infty} \alpha_i \|s_i\| \leq \frac{1 + \overline{\omega}}{A} \sum_{i=1}^{\infty} \|f_i\| < \infty
\]
so that the sequence x_i, $i \in \mathcal{N}$, satisfies the Cauchy condition. Therefore, $x_i \rightarrow x^*$, which together with $f_i \rightarrow 0$ gives $f(x^*) = 0$.

Theorem 2 Let assumptions A1 - A3 be satisfied, let $x_i \in \mathcal{L}(\overline{\mathcal{F}})$, $A_i = J(x_i)$ and let D1 hold. Then integer $\overline{\tau}_2$, independent on $i \in \mathcal{N}$, exists, such that the Armijo rule D2 finds, after at most $\overline{\tau}_2$ steps, a steplength $\alpha_i \geq \beta^2$ satisfying (2.2) with a given $0 < \rho < 1$.

Proof (a) Assume that (2.2) does not hold with $x_{i+1} = x_i + \alpha_is_i$, i.e.
\[
F(x_i + \alpha_is_i) - F(x_i) < -2\rho(1 - \overline{\omega})\alpha_i f_i = -\rho(1 - \overline{\omega})\alpha_i \|f_i\|^2.
\]
On the other hand, using assumptions A1, A2 and the inequality
\[
g_i^T s_i = f_i^T (J_i s_i + f_i) - f_i^T f_i \leq - (1 - \overline{\omega}) \|f_i\|^2, \tag{2.7}
\]
which holds when $A_i = J_i$, we can write
\[
F(x_i + \alpha_is_i) - F(x_i) = \alpha_is_i^T g(x_i + \mu \alpha_is_i) \\
\leq \alpha_i \left(g_i^T s_i + \|s_i\| \|g(x_i + \mu \alpha_is_i) - g(x_i)\| \right) \\
\leq \alpha_i \left(- (1 - \overline{\omega}) \|f_i\|^2 + \alpha_i (\overline{\mathcal{T}}^2 + \overline{\mathcal{T}} \overline{\mathcal{F}}) \|s_i\|^2 \right),
\]
where $0 \leq \mu \leq 1$, since
\[
\|g(x_i + \mu \alpha_is_i) - g(x_i)\| = \|J_i^T (x_i + \mu \alpha_is_i)f(x_i + \mu \alpha_is_i) - J_i^T (x_i)f(x_i)\| \\
\leq \|J_i^T (x_i + \mu \alpha_is_i)(f(x_i + \mu \alpha_is_i) - f(x_i))\| \\
+ \|(J_i^T (x_i + \mu \alpha_is_i) - J_i^T (x_i))f(x_i)\| \\
\leq \overline{\mathcal{T}} \|f(x_i + \mu \alpha_is_i) - f(x_i)\| + \overline{\mathcal{T}} \mu \alpha_i \|s_i\| \|f_i\| \\
= \overline{\mathcal{T}} \int_0^1 J_i^T (x_i + \tau \mu \alpha_is_i) \|\mu \alpha_is_i\| d\tau + \overline{\mathcal{T}} \mu \alpha_i \|s_i\| \|f_i\| \\
\leq \overline{\mathcal{T}} (\overline{\mathcal{T}}^2 + \overline{\mathcal{T}} \overline{\mathcal{F}}) \alpha_i \|s_i\|.
\]
By coupling both of these inequalities and using relation (2.6), where we set $\overline{\mathcal{J}} = 0$, we obtain
\[
(1 - \overline{\omega} - \rho(1 - \overline{\omega})) \|f_i\|^2 < \alpha_i (\overline{\mathcal{T}}^2 + \overline{\mathcal{T}} \overline{\mathcal{F}}) \|s_i\|^2 \leq \alpha_i (\overline{\mathcal{T}}^2 + \overline{\mathcal{T}} \overline{\mathcal{F}}) \left(\frac{1 + \overline{\omega}}{\overline{\mathcal{T}}} \right)^2 \|f_i\|^2,
\]
5
so that \(\alpha_i > \underline{\alpha} \), where
\[
0 < \underline{\alpha} = \frac{(1 - \rho)(1 - \omega)J^2}{(J^2 + LF)(1 + \omega)^2} < 1.
\] (2.8)

(b) Let \(j_2 \) be the lowest integer so that \(\tilde{\beta}^2 \leq \underline{\alpha} \). Since \(\tilde{\beta}^2 \leq \alpha_i \leq \tilde{\beta}^2 \) holds after \(j_2 \) Armijo steps, then (2.2) necessarily holds after at most \(j_2 \) Armijo steps by part (a) of the proof.

Theorem 2 can be immediately applied to Algorithm 1. Since the failure in Step 4 can be indicated only if \(A_i = J_i \), we can eliminate this case by choosing the sufficiently large integer \(j_2 \), namely \(\tilde{\beta}^2 \leq \underline{\alpha} \), where \(\alpha \) is given by (2.8). Estimation (2.8) is usually unnecessarily strong and Algorithm 1 works well in practice with a relatively small value \(j_2 = 10 \) as it is demonstrated in Section 4.

Now we focus our attention on details which are necessary for the implementation of descent methods. First we state several comments concerning Algorithm 1:

1) Matrices \(J_i, i \in \mathcal{N} \), occurring in Step 3, can be computed either analytically or by automatic differentiation or by numerical differentiation. We used the last possibility in our computational experiments to make the Newton method comparable with other Newton-like methods (numerical differentiation described in Section 3 is very efficient for large sparse systems). Notice that the matrices \(J_i, i \in \mathcal{N} \), may not be computed explicitly if a transpose-free iterative method is used for the direction determination. In this case, we obtain a matrix-free method that uses numerical differentiation instead of multiplication by the Jacobian matrix.

2) The inequality \(0 \leq \overline{\omega}_i \leq \overline{\omega} < 1 \), required in Step 3, can be easily satisfied by setting \(\overline{\omega}_i = \overline{\omega} \). Nevertheless, a more careful choice of \(\overline{\omega}_i \) can slightly improve the efficiency of the inexact Newton-like method. We have used the value \(\overline{\omega}_i = \min(\max(||f_i||^\nu, \gamma(||f_i||/||f_{i-1}||)^\alpha), 1/i, \omega) \), with \(\nu = 1/2, \gamma = 1, \alpha = (1 + \sqrt{5})/2 \), in our numerical experiments. This choice is a combination of values introduced in [16] and [19] and it implies superlinear convergence of the method, since \(\overline{\omega}_i \to 0 \) as \(i \to \infty \) (see [15]).

3) Experimentally, we have found the values \(j = 1, j_1 = 5, j_2 = 10 \) suitable ones in Step 4c. The value \(j \) has no theoretical importance, it controls a frequency of restart in case the Newton-like method might be inefficient. An experience shows that greater values of \(j \) increase the total computational time.

4) The value \(\beta \alpha_i^j \leq \alpha_i^{j+1} \leq \tilde{\beta} \alpha_i^j \), computed in Step 4c, can be determined by constant reduction or by more sophisticated procedures such as quadratic or cubic interpolation. We examined all these possibilities and found constant reduction with \(\beta = \tilde{\beta} = 1/2 \) a suitable robust strategy for our collection of test problems.

5) If \(k = \infty \), then restarting is triggered only by backtracking failures. The finite value \(k \) is essential for limited memory quasi-Newton methods which cannot store more than \(O(k) \) vectors. Setting \(k = 0 \), we obtain the discrete Newton method.

Now we concentrate our attention on the determination of the direction vector. The vector \(s_i \in \mathcal{R}^n, i \in \mathcal{N} \), satisfying the inequality \(||A_i s_i + f_i|| \leq \overline{\omega}||f_i|| \) is most frequently
obtained as an approximate solution to the linear subproblem \(A_i s + f_i = 0 \) using some iterative method. In order to simplify the notation we omit the outer iteration index \(i \) in the remainder of this section, so that we write \(A, f, x \) instead of \(A_i, f_i, x_i \). On the other hand, we use the inner iteration index \(j \) for the description of iterative methods for linear subproblems. To satisfy the condition \(\| As + f \| \leq \| f \| \), for an arbitrary \(0 \leq \omega < 1 \), we need iterative methods which terminate after a finite number of steps. Moreover, computational experiments show that it is advantageous when these methods generate a sequence of iterates \(s_j, j \in \mathcal{N} \), and corresponding residual vectors \(r_j = As_j + f, j \in \mathcal{N} \), so that the norms \(\| r_j \|, j \in \mathcal{N} \), do not increase. This requirement can be fulfilled by the choice of some residual minimizing or smoothed conjugate gradient-type method. Moreover, since the system matrix \(A \) is not always explicitly known but can be given by the difference formula, we consider only the iterative methods which do not involve multiplication by the transpose of the matrix \(A \) (transpose-free methods).

One of the best-known and most widely used schemes of this type is the GMRES method presented by Saad and Schultz in [34]. Unfortunately, this method uses long recurrences \((O(n^3)) \) operations and \(O(n^2) \) storage in the unrestarted case or \(O(m^2n) \) operations and \(O(mn) \) storage in the m-steps restarted case) so that it may not be efficient for large-scale problems. We have had a good experience with the preconditioned smoothed CGS method, presented in [39] and given by the following algorithm.

Algorithm 2. Preconditioned smoothed CGS method.

Compute \(s = -C^{-1} f \) and \(r = As + f \). If \(\| r \| \leq \| f \| \), then stop.

Otherwise set \(s_1 = 0, \quad \bar{s}_1 = 0, \quad r_1 = f, \quad \bar{r}_1 = f, \quad p_1 = f, \quad u_1 = f \).

for \(j = 1, 2, 3, \ldots \) do

If \(\| r_j \| \leq \| f \| \), then set \(s = s_j, r = r_j \) and stop. Otherwise set

\[
\begin{align*}
v_j &= AC^{-1} p_j, \quad \alpha_j = \frac{f^T r_j}{f^T v_j}, \\
q_j &= u_j - \alpha_j v_j, \\
\bar{s}_{j+1} &= \bar{s}_j + \alpha_j C^{-1} (u_j + q_j), \\
\bar{r}_{j+1} &= \bar{r}_j + \alpha_j AC^{-1} (u_j + q_j), \\
\beta_j &= \frac{f^T \bar{r}_{j+1}}{f^T \bar{r}_j}, \\
u_{j+1} &= u_{j+1} + \beta_j q_{j+1}, \\
p_{j+1} &= u_{j+1} + \beta_j (q_j + \beta_j p_j), \\
[\lambda_j, \mu_j]^T &= \arg \min_{[\lambda, \mu]^T \in \mathbb{R}^2} \| \bar{r}_{j+1} + \lambda (r_j - \bar{r}_{j+1}) + \mu v_j \|, \\
s_{j+1} &= \bar{s}_{j+1} + \lambda_j (s_j - \bar{s}_{j+1}) + \mu_j C^{-1} p_j, \\
r_{j+1} &= \bar{r}_{j+1} + \lambda_j (r_j - \bar{r}_{j+1}) + \mu_j v_j.
\end{align*}
\]

end do

The matrix \(C \) serves for preconditioning. We used an incomplete LU decomposition of the matrix \(A + \varepsilon \text{diag}(A) \) as a preconditioner. Here \(\text{diag}(A) \) is a diagonal matrix which has the same diagonal as the matrix \(A \) and \(\varepsilon > 0 \) is a small number. Since the two parameter-minimal residual smoothing of the original CGS method [36] is used, the sequence of residual norms is non-increasing. The smoothed CGS method uses
short recurrences \((O(n)\) operations and storage requirement per iteration step), but it can break down if either \(f^T \tau_j = 0\) or \(f^T v_j = 0\). The solution of a linear system is obtained after at most \(n\) iterations (if breakdown does not occur and if rounding errors do not deteriorate the finite termination of the method). Note, that breakdown rarely appears. We have not met this situation in any of our computational experiments.

3 Review of Newton-like methods for nonlinear equations

In this section, we describe a set of methods for solving systems of nonlinear equations, which can be realized by Algorithm 1. All methods differ from each other only by the approximation of the Jacobian matrix \(J(x)\). Since we need the true Jacobian matrix for restarts, we begin with the numerical differentiation. For convenience, we denote the sparsity pattern of \(J(x)\) by \(S\). Then \((i, j) \in S\) if, and only if, \(J_{ij}(x) \neq 0\) (structurally).

The Jacobian matrix can be determined numerically by using two different ways. The first way, elementwise differentiation, is based on the approximation

\[
J_{ij}(x) = \frac{f_i(x + \delta_i e_j) - f_i(x)}{\delta_j},
\]

for all \((i, j) \in S\). Thus we need \(m\) scalar function evaluations (i.e. \(m/n\) equivalent vector function evaluations) where \(m\) is the number of nonzero elements in \(J(x)\).

The second way, groupwise differentiation, is based on a division of columns of \(J(x)\) into groups \(C_k, 1 \leq k \leq p\), so that each column belongs to only one group and, moreover, \((i, j_1) \in S, (i, j_2) \in S, j_1 \neq j_2\) imply \(j_1 \in C_{k_1}, j_2 \in C_{k_2}, k_1 \neq k_2\). Then, for each group \(C_k, 1 \leq k \leq p\), we compute the difference \(f(x + \sum_{j \in C_k} \delta_j e_j) - f(x)\) and set

\[
J_{ij}(x) = \frac{\epsilon_i^T (f(x + \sum_{j \in C_k} \delta_j e_j) - f(x))}{\delta_j},
\]

for all \((i, j) \in S \cap C_k\) (we use the notation \(S \cap C_k = \{(i, j) \in S : j \in C_k\}\) and \(S \setminus C_k = \{(i, j) \in S : j \notin C_k\}\)). Therefore, we need \(p\) vector function evaluations. Since the number of groups cannot be less then the number of nonzero elements in an arbitrary row, the number of vector function evaluations is usually slightly greater than the one connected with the elementwise differentiation. On the other hand, the computation can now be organized better (the expressions which are common for all scalar functions can be computed only \(p\) times), so that the groupwise differentiation is usually faster. Groupwise differentiation was first proposed in [13]. The optimum division of columns into groups and the equivalent graph coloring problem were studied in [11]. Efficient implementation of the resulting algorithm is given in [12]. We used this algorithm in all of our experiments (only the discrete Newton method was tested with both the elementwise and the groupwise differentiation).

Now we are in the position to describe individual methods for solving systems of nonlinear equations. The notation refers to Algorithm 1.
1) The discrete Newton method with elementwise differentiation (DNE). This method uses the value $\overline{k} = 0$. Elements of $J(x)$ are computed by (3.1).

2) The discrete Newton method with groupwise differentiation (DNG). This method uses the value $\overline{k} = 0$. Elements of $J(x)$ are computed by (3.2).

3) The Broyden-Schubert (BS) method. This method was introduced in [9] and [35]. If $k < \overline{k}$, then we use the update

$$A_{ij}^{+} = A_{ij} + \frac{e_{i}^{T}(y - Ad)d_{j}}{\sum_{(i,k) \in S} d_{k}^{2}}$$

$\forall (i, j) \in S$. Here $d = x^{+} - x$ and $y = f(x^{+}) - f(x)$. Clearly, $A_{ij}^{+} = 0$ if $(i, j) \not\in S$. We set $\overline{k} = \infty$ in our computational experiments.

4) The Bogle-Perkins (BP) method. This method was proposed in [4]. If $k < \overline{k}$, then we use the update

$$A_{ij}^{+} = A_{ij} + \frac{e_{i}^{T}(y - Ad)A_{kj}^{2}d_{j}}{\sum_{(i,k) \in S} A_{kj}^{2}d_{k}^{2}}$$

$\forall (i, j) \in S$. Here $d = x^{+} - x$ and $y = f(x^{+}) - f(x)$. Clearly, $A_{ij}^{+} = 0$ if $(i, j) \not\in S$. We set $\overline{k} = \infty$ in our computational experiments.

5) The Li (LI) method. This method, proposed in [25], is based on the groupwise differentiation. If $k < \overline{k}$, then only one group of columns is updated by numerical differentiation. Other columns remain unchanged. In other words, we set $l := l + 1$ if $l < p$ and $l := 1$ if $l = p$ ($l = 0$ is the starting value) and then substitute

$$A_{ij}^{+} = \frac{e_{i}^{T}(f(x + \sum_{j \in C_{l}} \delta_{j}e_{j}) - f(x))}{\delta_{j}},$$

$\forall (i, j) \in S \cap C_{l}$ and

$$A_{ij}^{+} = A_{ij},$$

$\forall (i, j) \in S \setminus C_{l}$. Clearly, $A_{ij}^{+} = 0$ if $(i, j) \not\in S$. We set $\overline{k} = \infty$ in our computational experiments.

6) The combination (LIBS) of the Li and the Broyden-Schubert methods. This method is again based on the groupwise differentiation. If $k < \overline{k}$, then only one group of columns is updated by numerical differentiation. Other columns are updated using the Broyden-Schubert algorithm. In other words, we set $l := l + 1$ if $l < p$ and $l := 1$ if $l = p$ ($l = 0$ is the starting value) and then substitute

$$A_{ij}^{+} = \frac{e_{i}^{T}(f(x + \sum_{j \in C_{l}} \delta_{j}e_{j}) - f(x))}{\delta_{j}},$$

$\forall (i, j) \in S \setminus C_{l}$.
\[\forall (i, j) \in S \cap C_l \text{ and } \]
\[A_{ij}^+ = A_{ij} + \frac{e_i^T (y - Ad) d_j}{\sum_{(i, k) \in S \cap C_l} d_k}, \]
\[\forall (i, j) \in S \setminus C_l. \]
Here \(d = x^+ - x \) and \(y = f(x^+) - f(x) \). Clearly, \(A_{ij}^+ = 0 \) if \((i, j) \notin S \).

We set \(\overline{k} = \infty \) in our computational experiments.

7) The modified Newton (MN) method. We set \(A^+ := A \), if \(k < \overline{k} \). This method needs a finite value \(\overline{k} \). The value \(\overline{k} = 5 \) was obtained experimentally.

8) The row scaling (RS) method. We set \(A^+ := DA \), if \(k < \overline{k} \), where the diagonal matrix \(D \) is determined from the quasi-Newton condition \(DAd = y \), i.e.
\[e_i^T D e_i = \frac{e_i^T y}{e_i^T Ad} \]
for all \(1 \leq i \leq n \) (here \(d = x^+ - x \) and \(y = f(x^+) - f(x) \)). The row scaling method was proposed in [20] in connection with the complete LU decomposition. This method needs a finite value \(\overline{k} \). The value \(\overline{k} = 5 \) was obtained experimentally.

9) The limited memory good Broyden (LMB) method. This method is a modification of the good Broyden method introduced in [8] and is based on a compact representation of quasi-Newton matrices proposed in [10]. Denote by \(D = [d, d_{-1}, \ldots, d_{-k}] \) and \(Y = [y, y_{-1}, \ldots, y_{-k}] \) the matrices constructed from the last \(k \) differences \(d = x^+ - x, \ d_{-1} = x - x_{-1}, \ldots, d_{-k} = x_{1-k} - x_{-k} \) and \(y = f(x^+) - f(x), \ y_{-1} = f(x) - f(x_{-1}), \ldots, \ y_{-k} = f(x_{1-k}) - f(x_{-k}) \) respectively, and define the upper triangular matrix
\[R = \begin{bmatrix}
 d^T d, & d^T d_{-1}, & \cdots, & d^T d_{-k} \\
 0, & d_{-1}^T d_{-1}, & \cdots, & d_{-1}^T d_{-k} \\
 \cdots, & \cdots, & \cdots, & \cdots \\
 0, & 0, & \cdots, & d_{-k}^T d_{-k}
\end{bmatrix}. \]

Then, if \(k < \overline{k} \), we set
\[A^+ = A_{-k} + (Y - A_{-k} D) R^{-1} D^T. \]

The limited memory Broyden method needs a finite value \(\overline{k} \). We obtained \(\overline{k} = 5 \) experimentally.

10) The limited memory column update (LMC) method. This method is a modification of the column update method introduced in [29] and is based on a compact representation of quasi-Newton matrices proposed in [10]. Let \(D \) and \(Y \) be the same matrices as in the previous case. Denote \(e = \arg \max_{\epsilon_i} |\epsilon_i^T d|, \ e_{-1} = \arg \max_{\epsilon_i} |\epsilon_i^T d_{-1}|, \ldots, \ e_{-k} = \arg \max_{\epsilon_i} |\epsilon_i^T d_{-k}| \) (arg max is taken over all \(\epsilon_i, 1 \leq i \leq n \)) set \(E = [e, e_{-1}, \ldots, e_{-k}] \) and define the upper triangular matrix
\[R = \begin{bmatrix}
 e^T d, & e^T d_{-1}, & \cdots, & e^T d_{-k} \\
 0, & e_{-1}^T d_{-1}, & \cdots, & e_{-1}^T d_{-k} \\
 \cdots, & \cdots, & \cdots, & \cdots \\
 0, & 0, & \cdots, & e_{-k}^T d_{-k}
\end{bmatrix}. \]

Then, if $k < \overline{k}$, we set

$$A^+ = A_{-k} + (Y - A_{-k} D)R^{-1} E^T$$

Note that the vectors $e_i, e_{-1}, \ldots, e_{-k}$ do not need to be stored. We only use indices of their unique nonzero elements. The limited memory column update method needs a finite value \overline{k}. We obtained $\overline{k} = 5$ experimentally.

11) The limited memory inverse column update (LMI) method. This method, which was introduced in [30], uses an approximation $S = A^{-1}$ of the inverse Jacobian matrix $J^{-1}(x)$. Therefore, if $k < \overline{k}$, we simply set $s := -Sf$ instead of using Algorithm 2. Denote $e_{-1} = \arg \max_{e_i} |e_i^T y_{-1}|$, \ldots, $e_{-k} = \arg \max_{e_i} |e_i^T y_{-k}|$ (arg max is taken over all e_i, $1 \leq i \leq n$). Then the vector Sf can be computed by the formula

$$Sf = S_{-k} f + \frac{e_{-1}^T f}{e_{-1}^T y_{-1}} v_{-1} + \ldots + \frac{e_{-k}^T f}{e_{-k}^T y_{-k}} v_{-k},$$

where $v_{-1} = d_{-1} - S_{-1} y_{-1}$, \ldots, $v_{-k} = d_{-k} - S_{-k} y_{-k}$. These vectors can be computed recursively by the formula

$$Sy = S_{-k} y + \frac{e_{-1}^T y}{e_{-1}^T y_{-1}} v_{-1} + \ldots + \frac{e_{-k}^T y}{e_{-k}^T y_{-k}} v_{-k}.$$

In both of these formulae we use the matrix $S_{-k} = (L_{-k} U_{-k})^{-1}$, where $L_{-k} U_{-k}$ is the incomplete LU decomposition of the Jacobian matrix $J(x_{-k})$. Note that the vectors e_{-1}, \ldots, e_{-k} do not need to be stored. We only use indices of their unique nonzero elements. The limited memory column update method needs a finite value \overline{k}. We obtained $\overline{k} = 6$ experimentally.

12) The discrete Newton method with successive differentiation (DNS). This method, proposed in [26], does not use Jacobian matrices. The products $Av = Jv$, which appear in Algorithm 2, are replaced by the numerical differentiation

$$Av = \frac{f(x + v \delta/\|v\|) - f(x)}{\delta/\|v\|}$$

where δ is a small difference (usually $\delta = 10^{-8}$ for a double precision arithmetic). Since the Jacobian matrix is not computed explicitly, we cannot use the incomplete LU decomposition of the Jacobian matrix as a preconditioner. Instead, we numerically compute, using differences, the tridiagonal part of the Jacobian matrix and then apply this tridiagonal matrix as a preconditioner.

4 Numerical experiments

In this section we present results of a comparative study of the Newton-like methods, described in Section 3, which were realized as Armijo-type descent methods (Algorithm 1) with inexact iterative solution of linear subproblems by the preconditioned
smoothed CGS method (Algorithm 2). These methods were implemented by using the modular interactive system for universal functional optimization UFO [27]. We used the values \(\beta = \overline{\beta} = 0.5, \rho = 10^{-4}, \varepsilon = 0.4, \varepsilon = 10^{-16}, \overline{r} = 200, \overline{j} = 1, \overline{j}_1 = 5, \overline{j}_2 = 10 \) in Algorithm 1. All test results were obtained by using 30 sparse problems. Names and sizes of these problems, together with their sources, are given in Table 1 (\(n \) is the number of equations and \(m \) is the number of nonzeros in the Jacobian matrix).
<table>
<thead>
<tr>
<th>No.</th>
<th>Problem</th>
<th>n</th>
<th>m</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Countercurrent Reactor Problem 1, [4]</td>
<td>5000</td>
<td>19996</td>
</tr>
<tr>
<td>2</td>
<td>Countercurrent Reactor Problem 2, [4]</td>
<td>5000</td>
<td>24993</td>
</tr>
<tr>
<td>3</td>
<td>Trigonometric System, [38]</td>
<td>5000</td>
<td>25000</td>
</tr>
<tr>
<td>4</td>
<td>Trigonometric-Exponential System - Trigexp 1, [38]</td>
<td>5000</td>
<td>14998</td>
</tr>
<tr>
<td>5</td>
<td>Trigonometric-Exponential System - Trigexp 2, [38]</td>
<td>4999</td>
<td>19993</td>
</tr>
<tr>
<td>6</td>
<td>Singular Broyden System, [20]</td>
<td>5000</td>
<td>14998</td>
</tr>
<tr>
<td>7</td>
<td>Tridiagonal System, [25]</td>
<td>5000</td>
<td>14998</td>
</tr>
<tr>
<td>8</td>
<td>Five-Diagonal System, [25]</td>
<td>5000</td>
<td>24994</td>
</tr>
<tr>
<td>9</td>
<td>Seven-Diagonal System, [25]</td>
<td>5000</td>
<td>34988</td>
</tr>
<tr>
<td>10</td>
<td>Structured Jacobian Problem, [20]</td>
<td>5000</td>
<td>39984</td>
</tr>
<tr>
<td>11</td>
<td>Extended Freudenstein and Roth Problem, [3]</td>
<td>5000</td>
<td>10000</td>
</tr>
<tr>
<td>12</td>
<td>Extended Powell Singular Problem, [31]</td>
<td>5000</td>
<td>10000</td>
</tr>
<tr>
<td>13</td>
<td>Extended Cragg and Levy Problem, [31]</td>
<td>5000</td>
<td>8750</td>
</tr>
<tr>
<td>14</td>
<td>Broyden Tridiagonal System, [31]</td>
<td>5000</td>
<td>14998</td>
</tr>
<tr>
<td>15</td>
<td>Broyden Banded System, [31]</td>
<td>5000</td>
<td>34984</td>
</tr>
<tr>
<td>16</td>
<td>Extended Powell Badly Scaled Problem, [31]</td>
<td>5000</td>
<td>10000</td>
</tr>
<tr>
<td>17</td>
<td>Extended Wood Function, [22]</td>
<td>5000</td>
<td>12500</td>
</tr>
<tr>
<td>18</td>
<td>Tridiagonal System, [3]</td>
<td>5000</td>
<td>14998</td>
</tr>
<tr>
<td>19</td>
<td>Discrete Boundary Value Problem, [31]</td>
<td>5000</td>
<td>14998</td>
</tr>
<tr>
<td>20</td>
<td>Discrete Boundary Value Problem, [2]</td>
<td>5000</td>
<td>14998</td>
</tr>
<tr>
<td>21</td>
<td>Troesch Problem, [33]</td>
<td>5000</td>
<td>14998</td>
</tr>
<tr>
<td>22</td>
<td>Flow in a Channel, [1]</td>
<td>5000</td>
<td>24994</td>
</tr>
<tr>
<td>23</td>
<td>Swirling Flow, [1]</td>
<td>5000</td>
<td>34998</td>
</tr>
<tr>
<td>24</td>
<td>Bratu problem, [23]</td>
<td>4900</td>
<td>24220</td>
</tr>
<tr>
<td>25</td>
<td>Poisson Problem, [20]</td>
<td>4900</td>
<td>24220</td>
</tr>
<tr>
<td>26</td>
<td>Poisson Problem, [28]</td>
<td>4900</td>
<td>24220</td>
</tr>
<tr>
<td>27</td>
<td>Porous Medium Problem, [19]</td>
<td>4900</td>
<td>24220</td>
</tr>
<tr>
<td>28</td>
<td>Convection-Diffusion Problem, [24]</td>
<td>4900</td>
<td>24220</td>
</tr>
<tr>
<td>29</td>
<td>Nonlinear Biharmonic Problem, [21]</td>
<td>2500</td>
<td>31504</td>
</tr>
<tr>
<td>30</td>
<td>Driven Cavity Problem, [23]</td>
<td>2500</td>
<td>31504</td>
</tr>
</tbody>
</table>

The first 21 problems have a standard form and their complete description can be found in the cited references while the last 8 problems require more detailed comments:

Problem 22: This is a finite difference analogue of the following nonlinear ordinary differential equation

$$u''' = R(u' u'' - uu''), \quad R = 500$$

over the unit interval Ω with the boundary conditions $u(0) = 0$, $u'(0) = 0$, $u(1) = 1$, $u'(1) = 0$. We used standard 5-point finite differences on an uniform grid having 5000 internal nodes. The initial approximate solution was a discretization of $u_0(x) = (x - 1/2)^2$.

13
Problem 23: This is a finite difference analogue of the following system of two nonlinear ordinary differential equations
\[
\begin{align*}
 u''' + R(uu'' + vv') &= 0 \\
 v'' + R(uv' + u'v) &= 0,
\end{align*}
\]
over the unit interval \(\Omega\) with the boundary conditions \(u(0) = u'(0) = u(1) = u'(1) = 0, v(0) = -1, v(1) = 1\). We used standard 5-point finite differences on an uniform grid having 2500 internal nodes. The initial approximate solution was a discretization of \(u_0(x) = (x - 1/2)^2\) and \(v_0(x) = x - 1/2\).

Problem 24: This is a finite difference analogue of the following nonlinear partial differential equation
\[
\Delta u + R \exp(u) = 0, \quad R = 6.8
\]
over the unit square \(\Omega\) with Dirichlet boundary conditions \(u = 0\) on \(\partial\Omega\). We used standard 5-point finite differences on a uniform grid having 70 \(\times\) 70 internal nodes. The initial approximate solution was a discretization of \(u_0(x, y) = 0\).

Problem 25: This is a finite difference analogue of the following nonlinear partial differential equation
\[
\Delta u = \frac{u^3}{1 + x^2 + y^2}
\]
over the unit square \(\Omega\) with Dirichlet boundary conditions \(u(0, y) = 1, u(1, y) = 2 - \exp(y), u(x, 0) = 1, u(x, 1) = 2 - \exp(x)\). We used standard 5-point finite differences on a uniform grid having 70 \(\times\) 70 internal nodes. The initial approximate solution was a discretization of \(u_0(x, y) = -1\).

Problem 26: This is a finite difference analogue of the following nonlinear partial differential equation
\[
\Delta u + \sin(2\pi u) + \sin \left(2\pi \frac{\partial u}{\partial x}\right) + \sin \left(2\pi \frac{\partial u}{\partial y}\right) + f(x, y) = 0,
\]
where \(f(x, y) = 1000((x - 1/4)^2 + (y - 3/4)^2)\), over the unit square \(\Omega\) with Dirichlet boundary conditions \(u = 0\) on \(\partial\Omega\). We used standard 5-point finite differences on a uniform grid having 70 \(\times\) 70 internal nodes. The initial approximate solution was a discretization of \(u_0(x, y) = 0\).

Problem 27: This is a finite difference analogue of the following nonlinear partial differential equation
\[
\Delta u^2 + R \left(\frac{\partial u^3}{\partial x} + f(x, y)\right) = 0, \quad R = 50
\]
where \(f(1/71, 1/71) = 1\) and \(f(x, y) = 0\) for \((x, y) \neq (1/71, 1/71)\), over the unit square \(\Omega\) with Dirichlet boundary conditions \(u(0, y) = 1, u(1, y) = 0, u(x, 0) = 1, u(x, 1) = 0\). We used standard 5-point finite differences on a uniform grid having 70 \(\times\) 70 internal nodes. The initial approximate solution was a discretization of \(u_0(x, y) = 1 - xy\).
Problem 28: This is a finite difference analogue of the following nonlinear partial differential equation

\[\Delta u - Ru \left(\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} \right) + f(x, y) = 0, \quad R = 20, \]

where \(f(x, y) = 2000x(1-x)y(1-y) \), over the unit square \(\Omega \) with Dirichlet boundary conditions \(u = 0 \) on \(\partial \Omega \). We used standard 5-point finite differences on a uniform grid having \(70 \times 70 \) internal nodes. The initial approximate solution was a discretization of \(u_0(x, y) = 0 \).

Problem 29: This is a finite difference analogue of the following nonlinear partial differential equation

\[\Delta \Delta u + R \left(\max(0, u) + \text{sign}(x - \frac{1}{2}) \right) = 0, \quad R = 500 \]

over the unit square \(\Omega \) with the boundary conditions \(u = 0 \) on \(\partial \Omega \) and \(\partial u(0, y)/\partial x = 0, \partial u(1, y)/\partial x = 0, \partial u(x, 0)/\partial y = 0, \partial u(x, 1)/\partial y = 0 \). We used standard 13-point finite differences on a shifted uniform grid having \(50 \times 50 \) internal nodes [23]. The initial approximate solution was a discretization of \(u_0(x, y) = 0 \).

Problem 30: This is a finite difference analogue of the following nonlinear partial differential equation

\[\Delta \Delta u + R \left(\frac{\partial u}{\partial x} \frac{\partial \Delta u}{\partial x} - \frac{\partial u}{\partial y} \frac{\partial \Delta u}{\partial y} \right) = 0, \quad R = 500 \]

over the unit square \(\Omega \) with the boundary conditions \(u = 0 \) on \(\partial \Omega \) and \(\partial u(0, y)/\partial x = 0, \partial u(1, y)/\partial x = 0, \partial u(x, 0)/\partial y = 0, \partial u(x, 1)/\partial y = 1 \). We used standard 13-point finite differences on a shifted uniform grid having \(50 \times 50 \) internal nodes [23]. The initial approximate solution was a discretization of \(u_0(x, y) = 0 \).

A summary of results for all of these problems is given in two tables presented below. These tables consist of three parts. The first part introduces, for each Newton-like method, geometric means of individual numbers of iterations IT, function evaluations FV, CGS iterations CG (or complete LU decompositions DC), backtracking steps LS and computational times in seconds. The geometric mean of \(n_i \), \(1 \leq i \leq 30 \) was computed by the formula \(\left(\prod_{i=1}^{30}(n_i + 1) \right)^{1/30} - 1 \). The second part introduces total numbers of iterations IT, function evaluations FV, CGS iterations CG (or complete LU decompositions DC), computational times in seconds and possible failures. Failures caused by exceeding upper limits \(\bar{T} \) and \(\bar{J}_2 \) in Algorithm 1 sometimes appeared when problems 1, 2, 5, 8, 17 and 23 were solved. Data for cases of failures are included in the overall statistics. The third part contains total storage requirements for all problems in kilobytes kB. Table 2a corresponds to preconditioned smoothed CGS algorithm. We used an incomplete LU decomposition of the matrix \(A + \varepsilon \text{diag}(A) \) as a preconditioner, where \(\varepsilon = 0 \) for problems 1-28 and \(\varepsilon = 10^{-2} \) for ill-conditioned problems 29-30. Table 2b is comparative and it contains results obtained after replacing the preconditioned smoothed CGS algorithm by complete LU decomposition (we used the unsymmetric-pattern multifrontal scheme implemented in the UMFPACK package [14]).
According to the results presented in the above tables, we can make several conclusions (which are, of course, influenced by our collection of test problems):

1) Newton like methods with preconditioned smoothed CGS iterations are competitive (measured by the total computational time) with methods based on complete LU decomposition. On the other hand, the former ones are more robust and have lower storage requirements.

2) Discrete Newton methods (DNE, DNG) are more efficient and more robust than sparse quasi-Newton methods (BS, BP). Methods based on cyclic differentiation (LI, LIBS) were shown as the worst ones (measured by the computational time and the number of failures) among all tested Newton-like methods (with the exception of the derivative free DNS method).
3) Limited memory quasi-Newton methods (LMB, LMC, LMI) are more efficient and more robust than sparse quasi-Newton methods (BS, BP). Particularly, the LMI method was shown as the best one (measured by the computational time and the number of failures) among all tested Newton-like methods.

4) The DNS method is neither efficient nor robust since it cannot be implemented with an efficient preconditioner based on incomplete LU decomposition. Almost all failures were caused by exceeding the maximum number 1200 of function evaluations. However, this method has a minimum storage requirement and sometimes gives very good results.

5) Algorithm 1 is very efficient and robust at least in connection with the LMI method.
Bibliography

