
A Superpolynomial Lower Bound for (1,+k(n))-Branching Programs

Žák, Stanislav
1995

Dostupný z http://www.nusl.cz/ntk/nusl-33629

Dı́lo je chráněno podle autorského zákona č. 121/2000 Sb.

Tento dokument byl stažen z Národnı́ho úložiště šedé literatury (NUŠL).

Datum staženı́: 27.04.2024

Dalšı́ dokumenty můžete najı́t prostřednictvı́m vyhledávacı́ho rozhranı́ nusl.cz .

http://www.nusl.cz/ntk/nusl-33629
http://www.nusl.cz
http://www.nusl.cz

INSTITUTE OF COMPUTER SCIENCE

ACADEMY OF SCIENCES OF THE CZECH REPUBLIC

A superpolynomial lower bound for
����k�n���branching programs

Stanislav �Z�ak

Technical report No� ���

January �� ����

Institute of Computer Science� Academy of Sciences of the Czech Republic
Pod vod�renskou v��� �� �	�
� Prague 	� Czech Republic

phone� ����� �������� fax� ����� 	�	��	�
e�mail� stan�uivt�cas�cz

INSTITUTE OF COMPUTER SCIENCE

ACADEMY OF SCIENCES OF THE CZECH REPUBLIC

A superpolynomial lower bound for
����k�n���branching programs

Stanislav �Z�ak
�

Technical report No� ���
January �� ����

Abstract

By 	��
k	n���branching programs 	b� p�s� we mean those b� p�s which during each
of their computations are allowed to test at most k	n� input bits repeatedly� For a
Boolean function J computable within polynomial time a trade�o has been proven
between the number of repeatedly tested bits and the size of each b� p� P which
computes J � If at most bpn���	log	c	n����c � � repeated tests are allowed then
the size of P is at least c	n�� This yields superpolynomial lower bounds for e� g�
	��

p
n���	log	n�loglog	n�����b� p��s and for 	��

p
n���	log	n�����b� p��s�

The presented result is a step towards a superpolynomial lower bound for ��b� p��s
which is an open problem since ���� when the �rst superpolynomial lower bounds for
��b� p�s were proven ���� ����

Keywords
branching programs

�This research was supported by GA CR� Grant No����������	
�

� Introduction

The main goal of the theory of branching programs 	b� p�s� is to prove a superpoly�
nomial lower bound for a Boolean function computable within polynomial time� This
would solve the P ��LOG problem�

In ���� the �rst superpolynomial lower bounds for ��b� p�s which are allowed to test
each input bit at most once during each computation were proven ���� ���� Since that
time a more general open problem stands to prove a superpolynomial lower bounds for
k�b� p�s� especially for ��b� p�s�

The �rst steps towards the case of ��b� p�s were made with real�time b� p�s�which
perform at most n steps during each computation on any input of length n� The results
were a quadratic lower bound ���� a subexponential lower bound ��� and an exponential
lower bound ����

Another attempt was to prove lower bounds for nondeterministic syntactic k�b�
p�s where the restriction that at most k tests of each input bit are allowed is applied
not only upon the computations but upon all paths in the b� p� in question� For
nondeterministic syntactic k�b� p�s exponential lower bounds have been proven ���� ����
For syntactic 	��
k	n���b� p�s tight hierarchies 	in k	n�� are proven in ����

However the problem for ��b� p�s remains open� Another idea is to prove lower
bounds for b� p�s for which some k input bits may be tested repeatedly 		��
k��b�
p�s� with the hope that it will be possible to reach the lower bound for ��b� p�s by
extending k to n� We prove superpolynomial lower bounds for a large k	n�� k	n� �p
n���	log	n�loglog	n���� This follows from a trade o between the number of allowed

tests and the size of b� p�s � as mentioned in the Abstract� The proof is achieved
through simple means�

� Preliminaries

We shall now introduce a usual de�nition of branching programs and of other concepts
we shall use in the next sections�

De�nition ��� Let n be a natural number� n � � � and I � f�� ���� ng be the set of bits�
By a branching program P �over I � we understand a directed acyclic ��nite� graph
with one source� The out�degree of each vertex is not greater than �� The branching
vertices � out�degree 	 � � are labeled by bits from I� one out�going edge is labeled by

� the other one by �� The sinks �out�degree 	
� are labeled by
 and ��

De�nition ��� Let u be an input word for a branching program P � u � f�� �gn� By
the computation of the program P on the word u � comp	u� � we mean the sequence
fvigki�� of vertices of P such that
a� v� is the source of P
b� vk is a sink of P
c� If the out�degree of vi � � then vi�� is the vertex pointed to by the edge out�going
from vi�
d� If the out�degree of vi � � and the label of vi � j � I then vi�� is the vertex pointed
to by the edge out�going from vi which is labeled by uj �u � 	u�� ���un� � f�� �gn��

�

We know that each input word determines a path in P from the source to a sink�
� Sometimes we can say that an input word u or a computation comp	u� goes through
a vertex v�

De�nition ��� Let P be a branching program�
a� If u is an input word then say that comp	u� tests a bit i i� there is a vertex

v � comp	u� with out�degree 	 � which is labeled by i � comp	u� tests i in v it is an
inquiry of i i is tested during comp	u� ��

b� We say that P is a k�branching program i� for each bit i and each input word u
the computation comp	u� tests bit i in at most k vertices of P �

c� We say that P is 	��
k��branching program i� for each input word u at most k
bits are tested more than once during comp	u��

d� By the size jP j we mean the number of its vertices�
e� By the Boolean function fP of n variables computed by P we understand the

function which is given as follows� for u � f�� �gn� fP 	u� is equal to the label of the last
vertex of comp	u� �this vertex is a sink��

De�nition ��� Let fn be a Boolean function of n variables� By the complexity of fn
we mean the size of a minimal branching program which computes fn� Let ffng be a
sequence of Boolean functions� By its complexity we mean a function s such that s	n�
is the complexity of fn �

A language L � f�� �g� determines a sequence of Boolean functions� thus� we speak
about the complexity of L�

We know that we can also de�ne the complexity of a sequence of Boolean func�
tions using branching programs which are restricted in some sense 	e� g� k�branching
programs�� Naturally� the derived complexity grows with the severity of the restriction�

Let us recall a usual operation relevant to branching programs� It is possible to
reduce the sets of vertices and edges to those which are used by computations on a
subset of input words� The resulting structure is a b� p� too�

� The de�nition of the Boolean function J

For the purposes of our de�nition we shall organize the n 	�	�m��� input bits in a
binary matrix with �

p
n rows and

p
n�� columns� On this matrix we shall de�ne

a move which will be given by iterations of the function Jump from the following
de�nition�

De�nition ��� Let A be a �
p
n � p

n�� binary matrix �n � 	�m���� We de�ne a
function Jump � f�� �g�pn � f�� ����pn��g � f�� �g�pn � f�pn� ����pn

p
n��g as

follows� Let M � f�� �g�pn and k � f�� ����pn��g� Jump	M�k� � 	M �� k�� where
M � � M � Ck � � is the componentwise sum modulo � and Ck is the k�th column of
A� and k� � k
	kM �k��kM �k���� where kM �k� is the number of one�s in M �� kM �k�
the number of zeroes� � M is called the input memory� M � the output memory��

�

We see that if k� � f�� ����pn��g it is possible to iterate the function Jump on
arguments M �� k� 	Jump	M �� k����

De�nition ��� Let A be a �
p
n � p

n�� binary input matrix� The value J	A� is
given as follows� We start the iterations of Jump with the values M � f�g�pn and
k � �� We iterate Jump until k� �� f�� ����pn��g or

p
n�� iterations are performed�

We de�ne J	A� � � i� k� of the last iterations of Jump equals
p
n��
 �� In the other

cases J	A� � ��

It is clear that J is computable within polynomial time� J is in P � On the other
hand J seems to be hard for Turing machines with logarithmic tape and for branching
programs of polynomial sizes�

� The lower bounds

Before the proof of the following theorem we introduce a technical de�nition�

De�nition ��� Let I � f�� ���� ng be the set of bits� Let A � I�A 	�
� By an
assignment � of A we mean a mapping � � A � f�� �g� If B � I�B 	�
� B � A �

and � is an assignment of B then by ��� �� we mean the assignment of A � B where
��� ��	i� � �	i� if i � A and ��� ��	i� � �	i� otherwise� If a is a word� a � f�� �gn� then
we can understand a as an assignment of I� For A � I� adA is an assignment of A�

Theorem ��� Let c be a function� c � N � N�n � c	n� � �
�
p
n��

p
�� On

	��
bpn���	log	c	n����c � ���b� p��s� the complexity of J is at least c�

Proof� By contradiction� We suppose that there is a number n� n � N � and
	��
bpn���	log	c	n����c����b� p� P which computes J on inputs of length n and the
size of P is less than c	n�� We shall construct an input word a which will require 	on
P � to test at least x � bpn���log	c	n���c bits two times� This will be a contradiction�

We shall construct a and a sequence of input words b�� ���� bx� For each i� � � i � x�
the inputs a and bi will dier only on a set Ai of bits� jAij � �log	c	n��� for dierent
i� j it will hold Ai �Aj �
� We shall prove that for each i comp	a� and comp	bi� must
branch at least two times� This fact� with regard to the construction of a and bi� will
require that at least one bit from Ai must be tested at least two times during comp	a��
This will be our contradiction�

We follow the computations of P until log	c	n�� tests of bits are performed during
each of them� Since jP j � c	n� there are two computations on inputs c�� c� which
branch and then they are sticked in a vertex� Let C� be the set of bits tested by
comp	c�� and C� be the set of bits tested by comp	c��� Let A� � C� �C�� We see that
jA�j � �log	c	n��� Now we de�ne parts of inputs a and b�� a equals c� on C� and a
equals c� on C� � C�� b� equals c� on C� and b� equals c� on C� � C�� We see that
comp	a� follows comp	c�� and comp	b�� follows comp	c�� until comp	a� and comp	b��
join in a vertex� It is clear that there is a bit in A� on which a and b� dier� Such bits
will be called important bits of the set A�� On bits outside of A�� b� will equal a 	as
follows��

�

If Ai� bi are constructed we continue in the following way� We take only those

inputs which equal a on
iS

j��
Aj� These inputs de�ne a subprogram Pi of P � Since

j iS

j��
Ajj � �log	c	n��x � p

n�� each computation of Pi is longer than log	c	n��� 	If

not� then during a computation of P at most
p
n��
 log	c	n�� � p

n��
 �
p
n bits are

tested� This is unsu�cient for giving the correct answer � accept or reject�� We follow
the computations of Pi to the depth log	c	n�� and we de�ne a� bi��� Ai�� as a� b�� A�

above� We see that Ai�� �
iS

j��
Aj �
�

At this moment we have de�ned the inputs a� b�� ���bx on the set A �
xS

i��
Ai 	and the

important bits for each Ai�� Outside of A� a� b�� ���� bx will be the same� The content of
bits outside ofA will be such that it will hold J	a� � � and J	b�� � J	b�� � ���J	bx� � ��
It is clear that for each i comp	a� and comp	bi� branch� then they are sticked in a vertex�
and after that they will branch for the second times� According to the construction of
a� bi� Ai there will be a bit in Ai which will be tested during comp	a� the second time�
Hence during comp	a�� x bits will be tested repeatedly�

Since jAj � p
n�� there are �

p
n�� rows 	in each of the input matrices a� b�� ���� bx�

without any bits of A� Without loss of generality we assume that they are the last
�
p
n�� rows�
Now it is necessary to de�ne a and b�� ���� bx outside of A� We shall do it in steps�

In each step the contents of some bits will be de�ned in such a way that for some i�s
it will be clear that J	bi� � ��

Before the �rst step we say that a column C of the input matrix is free if C�A �
�
The other columns are called non�free� The number of the non�free columns is at most
jAj � x�log	c	n�� � p

n���log	c	n��� During the construction the number of non�free
columns will increase�

Let us describe the �rst step of our construction� We are in the situation when the
�rst column of the input matrix is pointed to 	to be an argument for the �rst iteration
of Jump� and the input memory is ��

p
n� If the �rst column does not contain any

important bit 	of any Ai� we de�ne the contents of bits which do not belong to A in
such a way that Jump points to a column C� which contains some important bits 	with
a memory M � f�� �g�pn�� After this action the �rst column of the input matrix is
non�free�

Let i�� ���� ik be all indices such that some important bits of Ai�� ���� Aik belong to
C�� Our task is to de�ne an assignment � of bits from C� � A in such a way that
Jump	M� �� points to free columns if the arguments ��� ad	C��A��� ��� bi�d	C��A��� � � �
� ��� bikd	C��A�� are used� Since a and bi dier at most on Ai and jAij � �log	c	n��� the
maximal distance between columns which will be pointed to is at most �log	c	n��� ��
There are many free columns 	as it is demonstrated at the end of the proof�� therefore�
it is possible to �nd �log	c	n�� � � adjacent free columns� Further it is possible to
choose � such that all columns which are pointed to belong to these �log	c	n�� � �
adjacent free columns� The contents of the 	free� columns which are pointed to but
which are not pointed to by Jump	M� ��� ad	C� � A��� we choose in such a way that

�

the next iteration	s� of Jump points to outside of the input matrix � for example to
the left� For those inputs bi J	bi� � �� The mentioned columns become non�free�

Now let us investigate the free column C� pointed to by Jump	M� ��� ad	C� �A����
In the case that for some i C� is pointed to by Jump	M� ��� bid	C� � A��� too� we
continue as follows�

We know that the iterations of Jump on a and the iterations on bi reach C� with
the input memories which a� dier on the �rst

p
n�� bits� b� are the same on the

remaining �
p
n�� bits� and c� dier on the rows on which important bits of Ai lie�

Therefore in the �rst
p
n�� bits of C� we give only one � on one row on which one

important bit of Ai lies� On the other
p
n���� bits we give zeroes� The content of the

remaining �
p
n�� bits will be such that the columns pointed to by the next iterations

will be free� It is possible to manage it as above� C� becomes non�free�
From the construction of the content of the �rst

p
n�� bits of C� it follows that the

free columns pointed to by the next iteration of Jump on a and by the next iteration
of Jump on bi are dierent� The number of bis such that iterations of Jump on them
follow the iterations of Jump on a is decreased�

The contents of the columns which are pointed to by the iterations of Jump on
bi�s but not pointed to by the iteration of Jump on a are de�ned in such a way that
the next iterations of Jump on them points to the left outside of the input matrix�
	J	bi� � ���

If there are bi�s such that iterations of Jump on them follow the iteration on a then
we repeat the last operation of decreasing of the number of such bi�s� In the other case
there are two possibilities� a� there is another column with important bits � we start
the next step of our construction with this column� b� if there is not such a column we
de�ne the content of the column pointed to by the last iteration of Jump on a in such
a way that the next iteration of Jump on a points to the right immediately after the
last column of the input matrix 	J	a� � ���

It remains to prove that in each step of our construction it is possible to �nd
�log	c	n�� � � adjacent free columns� Since the �rst column is non�free there are
at most NF groups of adjacent free columns where NF stands for the number
of non�free columns after the last step of our construction� It su�ces to prove
	
p
n�� � NF ��NF �log	c	n�� � �� It is clear that NF � jAj
 �x
 � since in

our construction for each input b�� ���� bx we need at most � free columns for the proof
that J	bi� � �� We see that
NF � x	�log	c	n�� � ��
 �x
 � � �xlog	c	n��� It su�ces to prove that
	
p
n�����xlog	c	n�� �log	c	n��� It follows from the choice of x�
�

Corollary ��� a� On 	��
bpn���	log	n�loglog	n���c � ���branching programs� the
complexity of J is at least 	log	n��log�n	
b� On 	��
bpn���	log	n���c � ���branching programs� the complexity of J is at least
nlog�n	�

Comment� The bounds are superpolynomial�

�

References

��� A� Borodin� A�Razborov� R� Smolensky � On Lower Bounds for Read�k�times
Branching Programs � Computational Complexity �� � � ���

��� S� Jukna � A Note on Read�k�times Branching Programs � Universit�at Dortmund
� Forschungsbericht Nr� ���� ����

��� M� Ft�a�cnik� J� Hromkovi�c � Nonlinear Lower Bound for Real�Time Branching
Programs�

��� K� Kriegel� S� Waack � Exponential Lower Bounds for Real�time Branching Pro�
grams � Proc� FCT���� LNCS ���� ��� � ����

��� D� Sieling � New Lower Bounds and Hierarchy Results for Restricted Branching
Programs

��� I� Wegener � On the Complexity of Branching Programs and Decision Trees for
Clique Functions � JACM ��� ����� ��� � ����

��� S� �Z�ak � An Exponential Lower Bound for One�time�only Branching Programs �
MFCS���� LNCS ���� ��� � ����

��� S� �Z�ak � An Exponential Lower Bound for Real�time Branching Programs � Infor�
mation and Control� Vol� ��� No ���� �� � ���

�

