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Abstract  
 
In this paper we describe a new axiomatization of quantum mechanics (QM) in which we replace 
the concept of the measurement by the concept of the observation. We shall describe and discuss 
this axiomatization in details. We show that new axioms are clear and evident and based on the 
common sense. Our approach is based on the idea of the observation of the individual state of the 
individual measuring system. We distinguish two concepts of a state: the individual state of the 
individual measuring system and the state of an ensemble of systems. Then we prove that the 
ontic model of QM (where the wave function describes the state of the individual system) is 
inconsistent. This is our main result. It implies that the “standard von Neumann’s text-book QM” 
is inconsistent. This implies the necessity to consider “non-realistic” models for QM. Moreover 
we show that the proofs of Bell’s theorem and of quantum nonlocality are not valid in these “non-
realistic” models for QM. This implies that there is no valid proof of the quantum nonlocality. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  



1. Introduction.  
 

Our starting point is the fact that certain form of observability must be present in any reasonable 
theory. Without possibility to observe something, the theory cannot be tested and cannot be 
related to the reality.  
 
The main idea in this paper is the axiomatization of the concept of an observation. We give a new 
axiomatization of quantum mechanics (QM) based on the concept of an observation instead of 
the axiomatization based on the concept of the measurement. 
 
We consider the minimal requirement of observability in the following form: it is possible to 
observe in which individual state the individual measuring system is (at a given moment of time). 
Observability means to observe the individual state of an individual  measuring apparatus. 
 
In each probability theory there is a duality between two concepts: the states of an ensemble and 
the states of an individual system. For example let us consider the dice. The space of individual 
states is Ω = {1,2,3,4,5,6} while the space of possible states of ensembles is the set of all 
probability distributions on Ω. Similarly for Brownian particle the state of an individual particle 
is the point in the physical space while the state of an ensemble is the probability distribution on 
the physical space. For QM this is analogical: there is an individual state i ∈	Ind	(S) of the 
measuring system and the state  ψ ∈	HS	 of the ensemble. 
 
Our axiomatization of QM (it can be considered also as the observational formulation of QM) is 
based on this simple idea: what is important is to observe the individual state of the 
individual measuring apparatus. 
 
On the other hand, the concept of a measurement is not mentioned among our axioms, i.e. in the 
definition of QM. The description of a measurement is a completely intrinsic question inside of 
QM (see [4]). 
 
In the next section we shall present the axiomatization of QM based on these ideas: the main 
result is this new axiomatization of QM based on the concept of an observation. 
 
It is not reasonable to expect that states of any system could be observed. Thus we introduce the 
set of systems which we shall called observable systems for which their individual states can be 
observed. 
 
In this way our axiomatization is a completely general approach to the ontology of quantum 
systems. 
 
The main consequences of this new axiomatization of QM are:  

(i) the inconsistency of the ontic model of QM,  
(ii) the Bell’s theorem is unproven 
(iii) the quantum non-locality is unproven 
(iv) the hybrid-epistemic model of QM (see [4]) is the unique consistent and reasonable 

model for QM 
 



We consider our axiomatization of QM as a true objective axiomatization of QM which is clearly 
evident and corresponds to the practical use of QM. 
 
In sect. 2 we present in details the new axiomatic formulation of QM (Axioms 1 – 9). In sect. 3 
we prove our basic theorems and discuss their consequences. In sect. 4 we describe the possible 
models of QM and their interrelations. In sect. 5 we show that proofs of Bell’s theorem and of 
quantum non-locality are not valid. In sect. 6 we discuss the principle of superposition and solve 
the “Schrodinger cat paradox” . In sect 7 we describe the solution of the measurement problem 
(see [5]). In sect. 8 we discuss out results. In sect. 9 we summarize our results. Then in Appendix 
A we present the simple form of our main argument. 
 
In this paper we continue the study from [3], [4], [7], [8], [9], [10]. 

 
 
 
 

2. A new observational axiomatization of quantum mechanics. 
 
At first we state the three standard axioms which are common in all axiomatizations of QM. 
 
Axiom 1.  
To each system S there corresponds (for the simplicity) the finite dimensional complex Hilbert 
space of states  HS = H(S) . 
 
At the beginning it is necessary to define clearly the state space. Let us consider the system S and 
its Hilbert space  HS . The state space of pure states is defined as a set of rays by  
 

PS = { [ψ] | ψ ∈ HS , || ψ || = 1 } ,    where  [ψ] = { aψ | a ∈ C , |a| = 1 } , || ψ || = 1 . 
 
We shall suppose that all state spaces used below will have dimension greater or equal to two. 
 
It is assumed that the state   [ψ] ∈	PS  ,  || ψ || = 1  is the state of an ensemble of systems prepared 
in certain way.  We shall consider always the state  [ψ] ∈	PS  as a state of certain ensemble  E  of 
systems. 
 
Axiom 2. 
Let  M  and S  be two systems, then there exists a composite system  T = M ⊕ S  for which we 
have  HT	=	HM	⊗	HS	. 
 
Axiom 3.  
For each system S there exists the unitary group { Ut | t ∈	R	}	in	the	space	HS	such	that	the	state	
vector		ψ(t) of S evolves along the standard rule ψ(t) = Ut ψ(0) . This unitary group is generated 
by the Hamiltonian of the system S . 
 
We continue with new axioms describing the concept of an observation. 
 



Definition. Observable system is such a system that its individual state (at a given moment of 
time) can be found by an observation of the system.  
 
Axiom 4.	 

(i) For each observable system  S	 there is defined the set of its possible individual states 
 

Ind (S) = {i1, i2,  … , in} .  n > 1 . 
 
(here  n ≤ dim HS and typically  n << dim HS)  

(ii) For each individual observable system  S  it is possible to observe (in a given moment 
of time) its individual state 

ISt (S) ∈	Ind	(S)	.	
	

The	fact	that	certain	individual	state	ISt	(S)	is	observed	is	considered	as	a	
random	event.	

(iii) Let us consider an ensemble  E = {S1, S2,  … , SN} ,  N → ∞ ,  of systems prepared in 
a same way. Then we assume that  Ind (S1) = … = Ind (SN) . We shall also assume 
that  H(S1) ≈  …≈  H(SN) . (Here ≈ denotes the isomorphism.) 

(iv) We shall assume that for each S and for each i ∈	Ind	(S)	and	for	each	ε	>	0	there	
exists	ψ	∈	HS		and	there	exists	an	ensemble	E	in	the	state	ψ	such	that	S	∈	E	and	|{R	
∈	E	|	ISt(R)	=	i}|	>		(1-ε)	N	.	This	means	that	the	value	i	is	not	superfluous	and	it	
will	have	the	positive	probability	for	some	ψ	∈	HS		(this	is	a	rather	technical	
assumption). 

 
Definition.  
Let us consider the ensemble E = {S1, S2,  … , SN} , N large, and let the state of  E  be  [ψ] ∈	PS  . 
In this way we obtain (by making an observation) the sequence of individual states 
 

ISt (S1), ISt (S2), … , ISt (SN)  ∈	Ind	(S)	. 
 
We can define a new ensembles E(i) , i ∈	Ind	(S)  in the following way: 
 

E(i) = { S ∈	E	|	ISt	(S)	=	i }  ,  	
	
Then	we	define	the	relative	frequency,	i.e.	the	probability	as		
	

p	(	i	|	[ψ], E ) = N-1 | E(i) | ,   i  ∈	Ind	(S)1		.	
	
(Here		|	.	|		denotes	the	number	of	elements.)	
	
It	means	that	to	every		[ψ] and E there corresponds a probability distribution  p ( . | ψ, E )  on 
the set Ind (S). 
 

                                                 
1 The stabilization of the relative frequency is automatically assumed.  



We shall assume that the resulting probability distribution on Ind (S) depends only on the state  
[ψ] of an ensemble E, i.e. 
 
Axiom 5. 
For each  ψ  and  E  the probability distribution  p ( . | ψ,  E ) depends only on [ψ] , i.e. 
p ( . | [ψ], E ) = p ( . | [ψ] ) , for each E in the state [ψ] . 
 
Definition.  
Deterministic	probability	distributions	on	Ind	(S)	are	distributions	p(1),	…	,	p(n),	where		

	
p(i)	(i)	=		1	and	p(i)	(j)	=	0		if	j	≠	i			,	i  ∈	Ind	(S).	

 
The probability distribution p on Ind (S) is deterministic, if there exists  i ∈	Ind	(S)	such	that		
p	= p(i) . 	
	
Definition.  
For each  i ∈	Ind (S) we define  the set 

 
L(i) = { ψ ∈	HS	| p ( j | [ψ] ) = 0 , for each j ≠	i	,	j ∈	Ind	(S)	}  . 

 
We shall call any such L(i)  the homogeneous subspace of HS . The set of all homogeneous 
subspaces will be denoted by Hom (S) . 
The state [ψ] is a homogeneous state if  ψ ∈	L(i)  for some i ∈	Ind (S) . The set of all homogeneous 
states is denoted  hom (S).  
 
If  [ψ]  is a homogeneous state, then  p ( . | [ψ] ) is a deterministic probability distribution on  Ind 
(S) .   
 
Axiom 6. We shall assume that p ( i | [ψ] ) depends quadratically on ψ (this is generally true in 
QM – see the Born’s rule). 
  
Proposition 1.  
Let j ∈	Ind (S) and let us assume that there exist an operator  Kj , such that  
 

p ( j | [ψ] ) = (ψ | Kj ψ )  , for each  ψ ∈	HS , ||ψ|| = 1. 
Denote  

Nj = { ψ ∈	HS	|	p	(	j	|	[ψ] = (ψ | Kj ψ) = 0 } . 
 
Then Nj is a linear subspace of HS. 
 
Proof.  

(i) We show that the operator  Kj is positive. For  ψ ∈	HS , ||ψ|| = 1 the positivity of  (ψ | 
Kj ψ ) follows from the definition since  p ( j | [ψ] ) ≥ 0. For the vector aψ , a ∈	C,	we	
have		(aψ | Kj aψ )	=		|a|2	 (ψ | Kj ψ ) ≥ 0.		 
 

(ii) The	spectral	decomposition	of	Kj	is		Kj	=	Σs		λs		ϕs	⊗	ϕ	s
*
			where	λs		>	0		for	 



each	s	=	1,	…	,	k	≤	n	.	We	obtain	 
 
(ψ| Kj ψ) = Σs	λs	(ψ|	ϕs	⊗	ϕs*	ψ) = Σs	λs	(ψ |	ϕs)	(ϕs	|	ψ) = Σs	λs	|(ϕs	|	ψ)|2. 
 
Then  Nj = { ψ | (ϕs	|	ψ) = 0 for each  s	=	1,	…	,	k	}	since	λs	> 0 . (The end of proof.) 
 

Proposition 2. 
The set  L(i)  is a linear subspace of HS  for each  i ∈	Ind (S). 
 
Proof.  
We have  L(i) = ∩ { Nj | j ≠	i	}	. 
 
Definition.  
We define that P(i) is the orthogonal projection from HS onto L(i) ,  i ∈	Ind (S) . 

 
Clearly, ψ ∈	L(i)  if and only if P(i) (ψ) = ψ .  
 
Thus we have a 1-1 map   

i ∈	Ind (S) → L(i)  ∈	Hom (S)  .  
 
The rest of axioms are standard: Born’s rule, the update rule and the existence of observable 
systems. 
 
Axiom 7. (Born’s rule.) 
 
For each state  [ψ] ∈	PS  and for each individual state  i ∈	Ind(S)		the	Born’s	rule	holds	
	

p ( i | [ψ] ) = || P(i) (ψ) ||2  . 
 
Axiom 8. (The update rule for ensembles and states.) 
Let  E  be an ensemble in the state  [ψ] and  let the observable system S be an element of  E . 
After the observation we found that the individual state of S is i ∈	Ind (S). Then the system S 
must be considered as an element of the ensemble  E(i) . Thus the ensemble E to which S belongs 
must be updated to an ensemble  E(i)   as a result of acquiring the new information on the 
individual state of S. Thus the pertaining of S into some ensemble is updated in the following 
way 
 

S ∈	E		→  S ∈	E(ISt(S))		.	
	
The change of the state of S ,  i. e.  the update of the state of ensemble is   
 

[ψ] →  [ || P(i) (ψ) ||-1 P(i) (ψ) ]  ,   ||ψ|| = 1. 
 
Axiom 9.  (The existence of observable systems – an evident requirement.) 
For each n ≥ 2 there exists at least one observable system satisfying | Ind (S) | = n . 
 



 
 
 

3. Basic theorems. 
 

Axioms we have formulated above have important consequences. At first we shall formulate and 
prove theorems and their consequences and then we shall discuss their meaning. 
 
The following Theorem 1 is the most important consequence of our axioms. 
 
Theorem 1,   
If  i, j ∈	Ind	(S)		and		i	≠	j		then		homogeneous	subspaces	L(i)		and		L(j)	are	orthogonal.  
 
Proof.   
At first we shall show that  P(j) P(i) = 0 .  
Let  ψ ∈	L(i)	,	i.e.		P(i) (ψ) = ψ , ||ψ|| = 1.	Then	p	(	.	|	[ψ] ) = p(i) , so that  p ( j | [ψ] ) = p(i) (j) = 0 . 
Then using the Born’s rule we obtain  0 = p ( j | [ψ] ) = || P(j) (ψ) ||2 , so that  P(j) (ψ) = 0 . Then  
P(j) P(i) (ψ) = P(j) (ψ) = 0 .  
Let  ψ be orthogonal to  L(i)	.	Then		P(i) (ψ) = 0  by the definition of  P(i) . Thus we have P(j) P(i) (ψ) 
= 0 . Together we obtain that P(j) P(i) = 0 . 
Let  ψ ∈	L(i)		and		ϕ ∈	L(j)	,	||ψ|| = ||ϕ|| = 1.		We	have		P(i) (ψ) = ψ  and  P(j) (ϕ) = ϕ and then  
 

(ϕ | ψ ) = ( P(j) (ϕ) | P(i) (ψ) ) = ( ϕ | P(j) P(i) (ψ) ) = (ϕ | 0 ) = 0 .     (The end of the proof.) 
 
Thus in our axiomatization of QM any two homogeneous states coming from distinct 
homogeneous subspaces must be orthogonal. Let us remark that there must exist at least two 
distinct (and at least one-dimensional)  L(i)’s. 
 
In his important monograph [1] von Neumann explicitly states that each ensemble in the pure 
state is homogeneous. This is the basis of the standard QM in the formulation that each  [ψ] ∈	PS    
can be a state of an individual system. 
 
Theorem 1 implies that this von Neumann’s postulate is inconsistent with QM. This means that 
the “standard von Neumann’s text-book QM” is inconsistent! But there is no problem with QM 
since there are others possible models of QM, where all calculations and practical results of QM 
are the same as in the standard QM. 
 
 
Theorem 2.  
Assume that  Ind (S) contains at least two elements. Then the set  Hom (S)  of all homogeneous 
subspaces creates the complete orthogonal decomposition of the Hilbert space  HS . 
 
Proof. 
We have already shown the orthogonality of homogeneous subspaces. Let us assume that  
Hom(S)  is not a complete orthogonal decomposition of  HS . Then there exists a state  [ψ] ∈	PS  



which	is	orthogonal	to	all	elements	of		Hom	(S)	,	i.e.	to	all	homogeneous	subspaces.	Using	
Axiom	7	(Born’s	rule)	we	obtain	
	

p	(	i	|	[ψ] ) =  || P(i) (ψ) ||2  = 0 ,  for each i ∈	Ind (S)  . 
 
This means that the function  p	(	.	|	[ψ] )  is trivially equal to 0 and this is impossible since this 
function is a probability distribution. Thus Hom (S) must be a complete orthogonal 
decomposition  of HS . 
 
 

 
 

4. Models of QM and their evaluation from the point of view of our axiomatic model of 
QM. 

 
At first we shall describe the list of available models of QM (in this paper we shall systematically 
exclude hidden variables models).   
 
Definition.  
A theory T is a model of QM if all empirical consequences of QM are also empirical 
consequences of T. 
 
Proposition 3.  
Our axiomatization of QM is a model of QM. 
 
Proof.  
Clearly every calculation or a demonstration from the standard QM can be reproduced on our 
axiomatic formulation of QM since all essential axioms of QM are reproduced in our axiomatic 
theory of QM. Section 4, 5, and 6 from [4] contain detailed explicit description of possible 
measurement processes and also a discussion of these processes. The main assumptions: the state 
space, the unitary evolution, the Born’s formula, the projection postulate etc. are the same in both 
theories. 
 
Definition.   

(i) A system S is an ontic system, if  Ind (S) = PS 2. 
(ii) A system S is an epistemic system, if  Ind (S) = 0 . 
(iii) A system S is hybrid-epistemic system if  Ind (S)  ≥ 2  and  Hom (S)  is an orthogonal 

decomposition of HS 
(iv) A system S is a hybrid system, if S is hybrid-epistemic system and each homogeneous 

subspace L(i) is one-dimensional. (evidently, each hybrid system is also a hybrid-
epistemic system.)   

 
A typical hybrid –epistemic system S is the composite of the hybrid system M and the epistemic 
system E ,  S = M ⊕ E , HS	=	HM	⊗	HE . 

                                                 
2 Here, of course, the number of elements of Ind(S) is infinite, but the essence of our argument go through 
independently of this fact. 



 
Definition.  

(i) A theory T is an ontic model of QM if each system is an ontic systems 
(ii) A theory T is an epistemic model of QM if each system is an epistemic systems 
(iii) A theory T is a hybrid model of QM if it contains only hybrid systems 
(iv) A theory T is a hybrid-epistemic model of QM if it contains systems which are either 

hybrid-epistemic or epistemic. 
 
Theorems 1 and 2 from the preceding section have important consequences. 
 
Proposition 3. There cannot exist ontic systems, i.e. any ontic model is inconsistent (Theorem 
1 asserts that any two homogeneous states belonging to distinct homogeneous subspaces  must be 
orthogonal) 

(i) The purely epistemic model is not acceptable since it contains no possibility of any 
observation 

(ii) The hybrid model is acceptable.  
(iii) Each observable system must be hybrid or hybrid-epistemic (Theorem 2 asserts that 

Hom (S)  is an orthogonal decomposition of HS , if all homogeneous subspaces are 
one-dimensional then the system is hybrid, otherwise it is hybrid-epistemic). 

(iv) Situation where Hom (S) is an incomplete orthogonal decomposition is impossible 
(Theorem 2). 

(v) Following the taxonomy of Gisin [11], the hybrid model is monistic while the hybrid-
epistemic model is dualistic. 

 
The inconsistency of the ontic model of QM has important consequences  
 

(i) The von Neumann’s postulate stating that each ensemble in the pure state is 
homogeneous is inconsistent with QM 

(ii) von Neumann’s postulate is a hidden assumption in the standard QM – this postulate 
is also the kernel of Bohr’s interpretation of QM (ψ is a possible state of an individual 
system) 

(iii) Only the hybrid-epistemic model of QM is possible since the epistemic model is  not 
acceptable (no observations are possible). 

(iv) In our axiomatization of QM all QM should be re-written in the sense of the hybrid-
epistemic model of QM  

(v) Only homogeneous state can be attributed as a state to the individual system. Thus the 
statement “the (individual) system S is in a state ψ” is meaningless unless the state ψ 
is homogeneous. 

(vi) The most important consequence is the invalidity of the Bell’s theorem and the 
invalidity of the so-called quantum nonlocality, but this will be considered in the next 
section. 

 
 
 
 
 

5. Bell’s theorem and the quantum non-locality  



 
Under the name of Bell’s theorem we mean the following statement (see [2]) 
 

Locality of QM  implies  Bell’s inequality . 
 

Bell’s inequality is clearly inconsistent with QM. The proof of Bell’s theorem is usually done in 
the ontic model of QM. The proof is based on the calculation done with individual states from at 
least two different bases.  
 
Theorem 3.  
The proof of the Bell’s theorem cannot go through in the epistemic, hybrid or hybrid-epistemic 
models of QM. 
 
Proof.  
We are not able to prove that there does not exist an another proof of Bell’s theorem but we can 
show that the standard proof of Bell’s theorem cannot go through in these models.  
Let us start with the epistemic model. It is clear that the proof of Bell’s theorem is based on the 
considerations concerning the individual states of Alice’s and Bob’s systems. But in the 
epistemic model there do not exist any individual states.  
In the case of the hybrid model the situation is similar. There exist individual states but the set of 
individual states is too small - it contains only one orthogonal base and this is insufficient for the 
proof. In fact in each proof of Bell’s theorem there must exist at least two distinct bases of 
individual states.  
The case of the hybrid-epistemic model is more close to the epistemic model so that argument 
from the hybrid model is applicable also to the hybrid-epistemic model. (The end of the proof.) 
 
Theorem 4. 
The non-locality of QM cannot be proved in the epistemic, hybrid and hybrid-epistemic models 
of QM. 
 
Proof. 
The standard proof of the non-locality is based on the Bell’s theorem. But in all models 
mentioned above the Bell’s theorem cannot be proved. I.e., the known proofs of non-locality of 
QM cannot go through. 
 
Remark. 
Both these theorems do not state the impossibility of any proof but only that the standard proofs 
cannot go through. But it is sufficient for the statement that there is no reason for the validity of 
Bell’s theorem and for the non-locality of QM. If there are no known proofs, this implies that 
these two assertions (Bell’s theorem and the non-locality) must be considered as unproven.  
 
The true meaning of the Bell’s theorem is the following. If one assumes the locality of QM then 
the Bell’s theorem implies that the “standard von Neumann’s text-book QM” is inconsistent! So 
this was the first proof of our main result. Bell’s proof requires the locality, so that it was possible 
to brush off this result with the excuse of possible nonlocality of QM. This was then the false 
start of quantum nonlocality. 
 



 
 
 

6. The principle of superposition and the solution to the “Schrodinger’s cat paradox” 
 
It is clear that the principle of superposition holds for states of ensembles, since states are vectors 
from the Hilbert space HS.  
 
But for homogeneous states the principle of superposition does not hold. 
 
Theorem 5. 
In the hybrid model of QM the principle of anti-superposition holds for homogeneous states. Any 
non-trivial  superposition of two distinct homogeneous states is not a homogeneous state.  
In the hybrid-epistemic model the non-trivial superposition of two homogeneous states is a 
homogeneous state only if these homogeneous states are elements of the same homogeneous 
subspace. 
 
Proof.  
Let us consider the hybrid model. This is a direct consequence of the Theorem 1: the non-trivial 
superposition of two distinct  homogeneous  states is not orthogonal to these states.  
Let us consider the hybrid-epistemic model. If two homogeneous states belong to two distinct 
homogeneous subspaces, then their non-trivial superposition will not be the homogeneous state. 
 

Theorem 6.  ( “Schrodinger’s cat paradox”) 
The “cat state”  

(1/2)1/2 (ψalive + ψdead ) 
 
is not a homogeneous state, so that it can be interpreted only as a state of an ensemble. 
 
Proof.  
Let us assume that the states ψalive and ψdead are homogeneous states (i.e. states applicable to 
individual systems). Since these two states are observably different, we can suppose that these 
two states belong to the different homogeneous subspaces. But then the “cat state” will not be a 
homogeneous state, so that it cannot be attributed to the individual system! This state can be 
interpreted only as a state of an ensemble. Clearly, in this ensemble some cats are alive and some 
are dead. There is no paradox. 
 
 

 
 

7. The solution to the measurement problem  
 
The measurement process consists in the realization of certain steps: 
 

(i) The measuring system M is prepared in the well-defined initial state. The measured 
system S is an element of the ensemble in the state ψ .  



(ii) These two systems interact by the interaction which is parametrized (for example) by 
the orthogonal base in the system’s Hilbert space HS. 

(iii) After the interaction the individual state of the measuring system M is observed. 
(iv) This process is repeated and the statistics of observed individual states of the 

measuring systems can be obtained. The result is the probability distribution  p ( . | ψ ) 
on the set of individual states Ind (M) of the measuring system M. 

(v) The obtained empirical probability distribution is compared to the distribution 
predicted by QM. 

 
The description of possible measuring process is described in details in [4], where two types of 
possible measuring processes are considered. Of course there may exist many other measurement 
schemas but we shall limit ourselves to these described in [4]. 
 
In general, by the introduction of the concept of the observation, the measurement problem is 
then the inner problem inside QM. The main problem of the existence of definite results of the 
measurement is clearly (and trivially) solved in our axiomatization – these are individual states of 
the individual measuring appasratus. 
 
The typical example.  (The measurement of spin.) 
The measuring system has two individual states,  Ind (S) = { iup, idown } while dim HS  is of an 
order of the Avogadro’s number. Nevertheless  { L(up), L(down) } is an orthogonal decomposition 
of HS. 
 
 
 
 
 

8. The discussion  
 
There are two contradicting positions 

 The ontic model of QM (it is equivalent to the von Neumann’s standard QM) 
 The existence of definite outcomes of a given experiment. 

 
The standard argumentation follows these steps:  
The ontic model  →  the measurement  →  the impossibility of definite outcomes (i.e. the 
measurement problem [5]). 
 
Our model is exactly opposite and follows another steps: 
The postulation of the existence of definite outcomes  →  the observation of the individual state 
of the measuring system  →  the inconsistence of the ontic model. 
 
In a short form: 
The standard von Neumann’s model  implies  the impossibility of the definite outcomes. 
The postulation of definite outcomes  implies  the inconsistence of the ontic model of QM. 
 
Thus there is a necessary choice between two alternatives: 



 The acceptance of the ontic model of QM 
 The existence of definite outcomes of an experiment. 

 
The right choice is simple and evident: the existence of definite outcomes is an evident fact while 
the existence of an ontic model of QM is a pure speculation without any objective support. Thus 
our axiomatization of QM is supported by evident facts while there is no real support for the ontic 
model of QM. 
 
We have to sacrifice something: to sacrifice the ontic model creates no serious problem (there are 
other models available) while to sacrifice the existence of definite outcomes is impossible. 
 
The main point of our axiomatization is the Axiom 4 (ii). This implies the existence of the 
definite outcomes in the postulating the existence of the function ISt (S) ∈	Ind	(S).	Other	new	
axioms	are	rather	technical	or	generally	acceptable.	
	
We	obtain	again	the	general	conclusion:	the	existence	of	definite	outcomes	implies	the	
inconsistence	of	the	ontic	model	of	QM.	
	
It	is	clear	that	the	existence	of	definite	outcomes	is	an	evident	and	sure	content	of	the	
common	sense.	
 
 
 
 

9. Conclusions 
 
The main input of our study is the axiomatization of the concept of an observability in QM and 
the relevant consequences. 
 
The main result is that the ontic model of QM is inconsistent, i.e. impossible. 
 
The other main consequences are: the Bell’s theorem is unproven, the quantum non-locality is 
unproven – they must be considered only as arbitrary  hypotheses without any provable support. 
 
We shall list the main consequences of the proposed axiomatization of QM 

 The ontic model of QM is inconsistent. The QM based on the von Neumann’s formulation 
is identical to the ontic model. The basic assumption of the von Neumann’s formulation is 
the assumption that each wave function describes a possible state of an individual system 
and this implies that this formulation should be identified with the ontic model – thus the 
von Neumann’s QM is inconsistent.  

 As a consequence, the foundational part of the standard QM must be rebuilt. This means: 
the wave function describes the state of an ensemble (an Einstein’s idea), the evolution is 
not an evolution of the state of an individual system but the evolution of a state of an 
ensemble etc. 



 The ontic model must be rejected and the other possible models have the property that the 
Bell’s theorem cannot be proved in these models. This means that there is no proof of the 
Bell’s theorem. 

 As a consequence we have obtained that there is no valid proof of the non-locality of QM.  
 
But there are also positive consequences of our axiomatization 

 The solution to the “Schrodinger’s cat paradox” is obtained and it is quite simple and 
natural 

 The solution to the Measurement problem in QM is obtained and it is simple and natural 
 The rational and plausible solution to the problem of the superposition of macroscopic 

states is obtained 
 The problem concerning the fact that the concept of a measurement makes part of the 

axiomatization of QM is solved 
 In [4] there is a complete description of the internal measurement process inside QM and 

this implies the solution to the measurement problem 
 There is no problem of collapse since now the “collapse” is considered as an update of an 

ensemble and of its state 
 
We think that our new axioms (4 – 6) are so general so that they could be acceptable for most of 
experts in the foundations of QM.  
 
So that we think that there is a time to change the standard formulation of QM, so that many 
long-standing problems will be solvable in a new way. We think that the von Neumann’s 
assumption that the ensembles in the pure state are homogeneous (i.e. that any pure state can be a 
state of an individual system) is provably wrong and that it was the source of most foundational 
problems of QM and that exactly this assumption has to be changed. 
 
Generally we think that the problem of the axiomatization of the concept of an observation in 
QM is recently the one of the important problems in QM and that the solution to this problem 
could be a way out from current problems in the foundations of QM. 
 
Our considerations enter exactly into the heart of the Einstein – Bohr debate. Bohr preferred the 
ontic model and Einstein preferred the epistemic model (Einstein was the first to consider the 
idea that the wave function does not describe the state of an individual system but the state of an 
ensemble, see also Ballentine [6[). Both standpoints are unacceptable: the ontic model is 
inconsistent while the epistemic model has no possibility of any observation.  
 
Nevertheless, the Einstein’s standpoint is quite close to our hybrid-epistemic model: in fact, in 
most situations the wave function describes the state of an ensemble but not the state of an 
individual system. 
 
The 85 years of the unsuccessful debate on the foundations of QM shows that there is something 
wrong in the standard QM and that there is a need for new ideas. 
 
 
 



Appendix A. The simplified version of our main argument. 
 
We think that it may be useful to give a simplified version of our argument (in the simple very 
regular situation) since the consequences of our results are very important and it is useful to see 
clearly the heart of the argument. 
 
This simplified situation corresponds to the hybrid model of QM. 
 
Axioms 1 – 5 are the same as above. 
 
Axiom 6*.  
For each i ∈	Ind	(S)		there	exists	exactly	one	state		[ψhom

(i)]	∈	PS  such that 
 
p ( j | [ψhom

(i)] ) = 0 3,  for each j ≠ i. 
 
Thus we have a 1-1 map   

i ∈	Ind (S) → [ψhom
(i)]  ∈	hom (S)    

 
where   hom (S) = { [ψ] | [ψ] is a homogeneous state } . 

 
As a consequence, the state of the ensemble  E(i)  is  [ψhom

(i)]   for each  i ∈	Ind (S) . 
 
Axiom 7*. (Born’s rule.) 
For each state  [ψ] ∈	PS  and for each individual state  i ∈	Ind(S)		the	Born’s	rule	holds	
	

p	(	i	|	[ψ] ) = | ([ψhom
(i)] | [ψ] ) |2 . 

 
Axiom 8*. (The update rule for ensembles.) 
Let  E  be an ensemble in the state  [ψ] and  let the observable system S be an element of  E . 
After the observation we found that the individual state of S is i ∈	Ind (S). Then the system S 
must be considered as an element of the ensemble  E(i) . Thus the ensemble E to which S belongs 
must be updated to an ensemble  E(i)   as a result of acquiring the new information on the 
individual state of S. Thus the pertaining of S into some ensemble is updated in the following 
way 

S ∈	E		→  S ∈	E(ISt(S))		.	
	
As a consequence we obtain the change of the state of S:  [ψ] → [ψhom

(ISt(S))]  . 
 
Theorem 1*.   
If  i, j ∈	Ind	(S)		and		i	≠	j		then		([ψhom

(i)] | [ψhom
(j)] ) = 0 . I.e. any two distinct homogeneous 

states must be orthogonal. 
 

                                                 
3 We suppose that individual states are not degenerated. 
 



Proof.  Let us consider the ensemble  E = { S1, S2,  … , SN } in the state [ψhom
(i)] . Then the 

probability distribution  p ( . | [ψhom
(i)] )  is  a deterministic probability distribution  concentrated 

at i . I.e. p ( j | [ψhom
(i)] ) = 0  for each  j ≠	i	.	Using	the	Axiom	7	(Born	rule)	we	obtain	

	
0	=	p ( j | [ψhom

(i)] ) = | ([ψhom
(j)] | [ψ hom

(i)] ) |2  .  
 
In his foundational monograph [] von Neumann explicitly states that each ensemble in the pure 
state is homogeneous. Theorem 1 implies that this von Neumann’s postulate is wrong.   
 
Theorem 2*.  
The set  hom (S)  of all homogeneous states is the orthogonal base of the Hilbert space  HS . 
 
Proof. 
We have already shown that hom (S)  is an orthogonal set. Let us assume that  hom (S)  is not an 
orthogonal base of  HS . Then there exists a state  [ψ] ∈	PS  which	is	orthogonal	to	all	element	of		
hom	(S)	.	Using	Axiom	7	(Born’s	rule)	we	obtain	
	

p	(	i	|	[ψ] ) = | ( [ψhom
(i)] | [ψ] ) = 0 ,  for each i ∈	Ind (S)  . 

 
this means that the function  p	(	.	|	[ψ] )  is trivially equal to 0 and this is impossible since this 
function is a probability distribution. Thus hom (S) must be a base. 
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